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How to Estimate Opportunity Costs of Aggregators?

Charalampos Ziras, Student Member, IEEE, Jalal Kazempour, Senior Member, IEEE,
Emre Can Kara, Member, IEEE, Henrik W. Bindner, Member, IEEE, Pierre Pinson, Senior Member, IEEE,

Sila Kiliccote, Member, IEEE

Abstract—A large number of mechanisms are proposed to
manage potential problems in distribution networks caused by
the participation of distributed energy resources (DERs) in the
wholesale markets. In this paper, we first introduce a practical
and straightforward mechanism, based on capacity limits, which
avoids conflicts between the transmission system operator and
the distribution system operators (DSOs). Using a large number
of real electric vehicle (EV) commercial charging stations we
then show how an EV aggregator can forecast the opportunity
cost incurred by offering a mid-term capacity limit service to the
DSO. This cost is computed based on the estimated profit that
the aggregator could gain in the day-ahead and real-time mar-
kets. The proposed methodology guarantees robustness against
evolving EV uncertainty, both in terms of service delivery and
driving requirements. It also allows the use of a variety of time-
series forecasting methods without forecasting electricity prices
and EV scenarios. The results of our empirical analysis show
the exponential increase of opportunity cost and the considerable
increase of the prediction intervals as the capacity limit decreases.
The produced offering curves can be used as an indication of the
underutilization cost of DERs caused by the DSO’s limitations.

Index Terms—Aggregator, capacity limit, DSO service, electric
vehicles, offering curve, opportunity cost.

NOMENCLATURE

Abbreviations
ARIMA Autoregressive integrated moving average
CVaR Conditional value at risk
DA Day ahead
DER Distributed energy resource
DLMP Distribution locational marginal pricing
DN Distribution network
DSO Distribution system operator
EV Electric vehicle
MA Moving average
MAE Mean absolute error
PI Prediction interval
RT Real time
TSO Transmission system operator
Battery model characteristics
∆T Duration of battery model’s time step
η Charging efficiency
Âi,j Inflexible EV sessions matrix for charger i at step j
Ai,j EV connection matrix for charger i at step j
Cd
t Battery model’s lower energy limit at step t

Cup
t Battery model’s upper energy limit at step t

Ct Battery model’s energy state at step t
N Number of EV chargers

NT Number of battery model’s time steps
P d
t Battery model’s lower power limit at step t
P up
t Battery model’s upper power limit at step t
Si,j Matrix of EV charging needs for charger i at step j
Indices
ω Index for scenario
d Index for service day
i Index for EV chargers
j Index for RT time steps
m Index for DA time steps
t Index for the battery model’s time steps
Forecast/optimization parameters and variables
λDA
m DA price at step m
λRT
j,w RT price at step j and scenario ω
πw Probability of occurrence for scenario ω
P̃ cap,∗
d Forecast of P cap,* at day d
Eacu
j Maximum accumulated consumption at step j

Jd Accuracy of P cap,* forecast at day d
NDA Number of DA market’s time steps
Ne Years of EV data
Np Years of price data
NRT Number of RT market’s time steps
P cap,*
d Minimum value of capacity limit at day d
PDA
m Aggregate DA power at step m
Pmax
i Nominal charging power of charger i
PRT
j,w Aggregate RT power at step j and scenario ω
Pt Aggregate power consumption at step t
QMA

Pcap,d Cost’s moving average at day d
tMA Days for moving average window
UMA

Pcap,d Cost’s price component at day d
Y MA

Pcap,d Price adjustment factor at day d

I. INTRODUCTION

A. Motivation

The continuously increasing production share of renewable
energy sources, together with the growing numbers of con-
trollable distributed energy resources (DERs) connected to
the distribution network (DN), bring important challenges to
power systems operation. More specifically, large renewable
production tends to decrease the correlation between wholesale
prices and electricity demand [1]. Moreover, the presence of
flexible DERs, their coordinated response to price signals, and
their participation in the volatile real-time markets may cause
operational problems in DNs.
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The unrestricted operation of DERs in general maximizes
their profits and minimizes the overall system cost. However,
this may bring operational problems to distribution system
operators (DSOs), since wholesale markets do not necessarily
respect DN constraints. Therefore, DSOs may desire to con-
strain DERs, or partially utilize them for their own needs, to
guarantee the reliable DN operation. A large number of DSO
congestion management mechanisms have been proposed, but
all have considerable weaknesses and may not facilitate the
optimal utilization of DERs. To this purpose, we present a
mid-term capacity limitation service, which will be tested
in the Danish demonstration project Ecogrid 2.0 [2]. In this
context, we address the following questions: (a) why a capacity
limitation service is a more appealing mechanism to DSOs
compared to other existing congestion management mecha-
nisms?, (b) how can an aggregator forecast the opportunity
cost of providing such a capacity limitation service?, and (c)
how can we consider the DER uncertainties to provide a robust
service, while respecting their operational constraints?

We calculate the opportunity cost of an aggregator of
electric vehicle (EV) charging stations participating in both
day-ahead (DA) and real-time (RT) markets when offering
such a capacity limitation service over a mid-term horizon.
By mid-term we refer to a period of at least one month.
In this paper we study the case of a monthly period, but
this period can be longer, to allow the DSOs enough lead
time for grid reinforcement, if they are unable to acquire the
desired services. Due to the rapid growth rate of EVs, we
focus on aggregated EV chargers and present an empirical
analysis based on real EV charging data from the state of
California. However, a similar approach with slight modifi-
cations can be used for other types of DER aggregations.
The evolving EV uncertainties and the volatile, unknown
electricity prices over a relatively large time horizon, would
require advanced forecasting methods for future EV scenarios
and prices. We present a different approach, where service
delivery and driving requirements are guaranteed over a fore-
cast horizon without explicitly forecasting the upcoming EV
scenarios. Similarly, we forecast the opportunity cost without
modeling and forecasting electricity prices, by employing a
more straightforward and practical approach, which allows the
use of a variety of time-series forecasting methods.

B. Existing DSO Mechanisms: Pros and Cons

The works of [1] and [3] provide a comprehensive overview
of various congestion management mechanisms. These resolve
DN operational problems and attempt to maximize social
welfare. Li et al. [4] propose the use of distribution locational
marginal pricing (DLMP) to alleviate DN congestions caused
by EV loads. By using the DA prices, the schedules of
aggregators of DERs may create operational problems in the
DN, if the market is cleared by the Transmission System
Operator (TSO) without taking DN constraints into account.
According to this method, dynamic tariffs are calculated by the
DSO before the clearing of the wholesale market and are sent
to the aggregators. Aggregators then modify their market offers
to alleviate congestions [4]–[6]. To this end, the DSO must
predict the uncontrollable load and the price responsiveness

of the aggregators to the tariffs. An iterative procedure for
obtaining DLMP tariffs is proposed in [7] to respect user
privacy, whereas in [8] and [9] some potential sources of
uncertainty are incorporated in the DLMP framework.

While DLMP may give the optimal solution for DA con-
gestion management, many important practical, operational
and market-related issues make its implementation difficult.
First, it imposes explicit schedules on potentially very low
aggregation levels. The net balance between a player’s market
position and its actual net load is currently calculated on a
much higher aggregation level. Enforcing this balancing on
medium- or low-voltage levels would require a huge increase
of system complexity. Additionally, uncertainties on such
small aggregations can be very high and hard to manage
in such a context. Most importantly, it is very difficult to
incorporate the participation of DERs on the RT or ancillary
services markets to the DLMP framework, thus hindering the
optimal utilization of DERs on all markets concurrently.

Time of use and power tariffs are other existing mechanisms
for dealing with DN congestion problems [1], [10], [11]. Un-
der these two mechanisms, DSOs impose time-variant tariffs
and charge customers according to their peak consumption
over a period to encourage price-driven peak shaving and val-
ley filling of consumption. Such a type of tariffs is a simple and
in many cases effective way for dealing with congestion issues.
However, they cannot address specific DSO needs and due to
regulations they cannot vary frequently and over locations of
a given DN. This limits their effectiveness, whereas due to the
high level of uncertainty on low aggregation levels these tariffs
cannot guarantee that DN operational constraints are always
fulfilled. Besides, such tariffs may not lead to an optimal
utilization of DERs for two reasons. First, they are designed
by the DSO and serve its own objectives, disregarding the
impact on the economic performance of DERs on the TSO-
level markets. Second, they cannot be very adaptive to each
DN location’s needs, and are in general inefficient because
they are not calculated through a market mechanism.

Other existing methods include variations of local flexibility
markets [12]–[15] or local coordination schema [16]. In these
mechanisms, the DSO acquires and activates flexibility ser-
vices or the aggregators coordinate to resolve DN operational
problems. One disadvantage of such methods is that they rely
on established baseline consumptions between the DSO and
aggregators. In many cases this is problematic due to small
aggregation sizes and the apparent conflict of interest among
the parties. They may also require explicit schedules on points
of the DN with very low consumption levels, which is in
general not desirable. Moreover, the continuous participation
of DERs in the energy and/or reserves markets in many cases
may render baselines meaningless. Furthermore, the nature
of such markets contradicts with common DSO operational
requirements, which are secure operation and minimal market
involvement. Operation so close to RT, or relying on aggrega-
tors to resolve DN problems, may result in strategic behavior
of the aggregators or violation of operational constraints, if
the aggregators are not willing or able to offer flexibility.

Various forms of capacity allocation mechanisms have been
proposed to alleviate DN congestions. In [17] aggregators bid
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for capacity on a network feeder. However, such a mechanism
requires a very active DSO involvement. To avoid customer
discrimination, it should be expanded to all customers, who
would need to pay for capacity. This could lead to significant
complexity and uncertainty for all involved parties. In [18]
a market mechanism which coordinates demand response
to adjust the aggregated load at a minimum utility loss is
proposed. Besides, in [19] an extension for multiple stages
which includes uncertainty is provided. Such methods, along
with the proposed transactive methods in [20] and [21] require
very active DSO involvement and increase system complexity.
Finally, they are not compatible with the current power system
structure, and do not provide congestion guarantees over
longer time periods.

C. Contributions

Considering the practical limitations of the existing DSO
congestion mechanisms, we investigate in this paper an al-
ternative approach to manage congestions in DNs. The con-
tributions of this work are as follows: First, we introduce a
mid-term DSO service and explain its advantages over other
existing DSO congestion management mechanisms. Second,
we propose a method to guarantee robustness in both ser-
vice provision and driving requirements, without forecasting
evolving EV scenarios. Third, this paper develops a method
for forecasting an aggregator’s opportunity cost, incurred by
providing the proposed DSO service. This forecast method
relies on decomposing the effect of EV scenarios and prices on
opportunity cost. Our opportunity cost estimation methodology
does not require explicit price forecasts. It also allows for the
use of different time-series forecasting methods.

D. Paper Organization

The remainder of the paper is organized as follows. In
Section II the proposed mid-term DSO service is presented.
In Section III an aggregated EV model and the aggregator’s
stochastic offering strategy problem in the DA and RT markets
are presented. In Section IV EV uncertainty is characterized,
and a method to handle it in a robust manner is proposed. In
Section V a strategy to estimate opportunity cost is presented.
In Section VI we present results for a real case study, and
finally, Section VII concludes the paper.

II. PROPOSED DSO CONGESTION MECHANISM

Each mechanism for handling DN operational problems
by involving customers and DERs has its own requirements,
advantages and disadvantages, and therefore a strictly defined
optimal solution may not exist. In the Danish demonstration
project Ecogrid 2.0 [2], a new way of handling DERs inte-
gration in DNs is proposed. This framework is compatible
with the current power system operation and the markets’
structure. This means that such a mechanism can be viewed
as an additional layer which does not create conflicts with the
aggregators’ participation in the DA, RT or ancillary service
markets. In this context, the DSO identifies in advance critical
points of the network which may become congested during
some hours of the day and requests capacity limitation services
by DER aggregators. Aggregators submit price/power curves

to the DSO, which correspond to the price requested by the
aggregators for guaranteeing that their total consumption does
not exceed a specific power limit.

The advantage of this service is that it does not rely
on baseline references, which present many challenges for
the DSOs [22], and thus it is much more straightforward
to verify. Compared to DLMP, it does not require the ag-
gregators to follow specific schedules on low aggregation
points, whereas all DER-related uncertainties are internalized
in the aggregators’ individual offering strategy problems. Fur-
thermore, the significant challenges of implementing DLMP
while considering the RT and the ancillary service markets
are bypassed. The proposed service does not require ex-post
coordination between the DSO and the aggregators, once the
service has been purchased. In other words, aggregators bid
their capacity limit curves and then they are responsible for
keeping their consumption below the cleared level. The DSO
is then not involved in the aggregators’ daily operation (for
instance via monitoring the DERs consumption or disconnect-
ing customers). Then, aggregators are free to participate in
any power market/service they wish, as long as the allocated
capacity limit is not exceeded throughout the service provision
period. It is thus much simpler to implement compared to
transactive control, and guarantees can be provided regarding
the DERs consumption (or production in a more generalized
setup), which is not the case with other DSO mechanisms.
Most importantly, a DSO capacity service can be offered
by aggregators in parallel to the TSO-level markets/services,
promoting competition and the optimal use of DERs. On the
contrary, the other aforementioned mechanisms prioritize the
DSO needs at the expense of overall DER performance on
all possible DSO/TSO services. As already mentioned, no
congestion mechanism is ideal, and each mechanism may have
its own shortcomings. However, a mechanism based on ca-
pacity limits concentrates very desirable characteristics for the
DSOs, such as: simplicity, security, easy verification, minimum
infrastructure requirements, and little DSO involvement.

A key feature of this service is its “mid-term” nature; in this
paper we consider a monthly period. A shorter service period
would probably result in increased efficiency, because of the
reduced uncertainty. However, a long enough time horizon is
crucial to allow the DSOs to implement grid reinforcement, so
that DSOs can consider this mechanism as a reliable alternative
in the network planning. Additionally, daily auctions could
result in strategic behavior and potentially no participation
from the aggregators in certain days. Finally, considering the
size of DNs, daily auctions for several points in the network
would increase administrative costs and the complexity of the
DSOs’ operation.

From a market design perspective, it is not challenging for
a DSO to develop a market for purchasing capacity limits
from aggregators – it is based on a simple supply-demand
auction. The most challenging part is to develop a systematic
methodology for an aggregator to calculate its opportunity cost
incurred by capacity limits provision. This cost will indeed be
the offer price of the aggregator in the proposed market, if it is
assumed to be a price-taker. This becomes more challenging
if we aim at deriving a curve of opportunity cost, i.e. a curve
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Fig. 1: Flowchart describing the different steps required to produce an offering
curve for an aggregator.

which expresses the aggregator’s opportunity cost (in USD) for
various capacity limit values (in kW). Given the novelty of this
capacity mechanism due to its mid-term nature, in this work
we propose a methodology to estimate the opportunity costs
of aggregators who offer a capacity service to the DSO. In the
following section we present an aggregate EV chargers model,
which we will use to formulate the aggregator’s stochastic
offering strategy problem, and manage the EV charging needs
uncertainty.

III. EV CHARGERS AGGREGATION

We consider the case of an aggregator managing a number
of EV charging stations. Here, we summarize the assumptions
considered in this work: First, the aggregator participates in
the DA and RT wholesale markets, and participates in the
DSO market auctions. Second, all charging stations belong
to a point of common coupling, for which the DSO desires
to acquire a capacity limitation service. Third, this service
must be offered to the DSO with 100 % reliability. Fourth,
the aggregator always fully satisfies the drivers energy needs.
This assumption is derived by the actual setup from which data
was collected, where charging starts immediately after the EVs
are parked, and drivers have no control over how this will
be performed, nor do they respond to any prices/incentives.
Finally, since there is no available efficiency data, we treat the
recorded consumption of a charging session as the actual EV
energy need.

Fig. 1 shows an overview of the different steps required to
produce an offering curve for the capacity service. Instead
of forecasting EV scenarios and electricity prices, and use
those forecasts to determine opportunity costs, we propose a
more straightforward and easy to implement approach. Based
on this approach, historical data for EV scenarios and prices
are used to calculate the opportunity costs in past days, and
then we create a training dataset. This dataset is eventually
used to directly forecast the aggregator’s opportunity cost in
an upcoming period.
A. EV Aggregate Model

We employ a battery model similar to the one proposed
in [23] to represent the aggregate EV chargers flexibility.
However, given the mid-term nature of the service and time-
evolving nature of the EV scenarios, uncertainty in our model
cannot be readily handled in the same way as proposed

in [23]–[26] for a DA scheduling problem. We propose an
alternative way to deal with uncertainty in our work, as will
be explained later in Section IV. We now present our battery
model. Consider a population of N unidirectional EV chargers,
indexed by i, and a horizon of NT steps; each step j has
a duration equal to ∆T . We denote each station’s nominal
charging power and efficiency by Pmax

i and η respectively. We
introduce the EVs connection matrix A ∈ RN×NT ; Ai,j = 1
if an EV is connected to charger i at time step j, otherwise
Ai,j = 0. We denote by S ∈ RN×NT the energy needs matrix.
A bold variable denotes a variable in matrix form. If a charging
session with energy needs E starts at j = k and ends at
j = l, then Si,k = E and Si,l = −E; in all other cases
Si,j = 0. The aggregation’s maximum potential consumption
P up
t at each time step t is given by

P up
t =

N∑
i=1

Pmax
i ·Ai,t, ∀ t. (1)

The aggregation’s energy state Ct is modeled similar to a
virtual battery. Assuming that the charging strategy always
satisfies the customers energy needs, an enclosing envelope
can be constructed which will bound energy state Ct. The
upper limit is defined by the EV arrivals and energy needs,
and expresses the maximum charged energy that can be stored
in the connected EVs at time step t; it is calculated as

Cup
t =

N∑
i=1

t∑
j=1

Si,j , if Si,j > 0, ∀ t. (2)

In other words, Cup
t represents the total energy which can

be provided to the EVs until step t. Lower energy limit Cd
t

depends on the EVs departures and the EVs energy needs.
It expresses the minimum amount of energy that needs to be
provided until time step t, so that enough energy is provided
to the EVs, and all charging needs are satisfied.

Cd
t =

N∑
i=1

t∑
j=1

|Si,j |, if Si,j < 0, ∀ t. (3)

When aggregate charging power Pt is consumed, Ct in-
creases by Pt · η. For each time step, the evolution of Ct is
calculated as

Ct = Ct−1 + Pt ·∆T · η, ∀ t. (4)

A minimum power limit P d
t is added to the model for

charging sessions corresponding to energy needs equal to the
chargers nominal charging power. In those cases there is no
flexibility and each EV charges at full capacity until it departs.
Let Â denote a matrix of zeros; consider a session from time
step k to l in charger i with energy needs Si,k. We set Â
equal to a constant power profile Si,k/[Pmax

i (l − k)∆T ] for
j ∈ [k, ..., l]. Note that this profile may be different from Pmax

i

due to the model’s granularity ∆T ; this mismatch diminishes
as ∆T → 0 and for the used 5−minute granularity we found
that the difference is negligible. The resulting lower power
limit is thus given by

P d
t =

N∑
i=1

Âi,t, ∀ t. (5)



1949-3053 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSG.2019.2921402, IEEE
Transactions on Smart Grid

5

We will use the outcomes of this battery model as inputs
of the optimization model in the next subsection to model the
aggregator’s participation in the DA/RT markets.

B. Aggregator’s Two-stage Stochastic Optimization

The aggregator purchases energy in the DA market and
participates in the RT market by modifying his aggregate con-
sumption with the DA schedule as a reference. Both markets
have a 24−hour horizon but the DA market granularity is equal
to one hour and that of the RT market is equal to five minutes.
The corresponding time steps are NDA = 24 and NRT = 288.
We denote by PDA

m the DA schedule for m = 1, ..., NDA and
by PRT

j the RT adjustment of consumption for j = 1, ..., NRT.
We model the aggregator’s daily operation as a two-stage
optimization problem. The first-stage decision is the set of
DA schedule values. EV uncertainties and electricity prices
(λDA
m and λRT

j denote the DA and RT prices respectively) are
expressed via scenarios w ∈ W , each with an occurrence
probability πw. EV uncertainty is expressed by the battery
model’s energy and power limits.

If the RT market and the aggregate EV model have dif-
ferent time step durations, then all necessary variables and
parameters must be aligned to the smallest duration. We use
the same duration ∆T , whereas n = NRT/NDA is the ratio
between the RT and DA time steps. The decision variables
set U = {PDA,PRT,C} includes the DA schedule, the RT
adjustment and the energy state for each scenario. It is assumed
that the necessary control/communication capabilities exist,
to allow the aggregator to control the chargers with a delay
considerably shorter than the 5−minute granularity of the RT
market. At this point we introduce parameter Pcap, which is the
capacity limit of the provided service by the aggregator to the
DSO. RT prices are in general more volatile than DA prices
and an aggregator can forecast the latter more accurately.
Thus, we assume that DA prices are known, and uncertainty
originates from RT prices and the EV charging sessions. The
aggregator’s optimization problem is formulated as follows

min
U

NDA∑
m=1

PDA
m · λDA

m +
∑
w∈W

πw

NRT∑
j=1

PRT
j,w · λRT

j,w ·∆T (6a)

s.t. Cd
j,w ≤ Cj,w ≤ C

up
j,w, ∀ j, w (6b)

P d
j,w ≤ PRT

j,w + PDA
j|m ≤ P

up
j,w, ∀ j, w (6c)

Cj,w = Cj−1,w +(PDA
j|m + PRT

j,w) ·∆T ·η, ∀ j, w (6d)

C0,w = 0, ∀ w (6e)

PDA
j|m + PRT

j,w ≤ P
cap
j , ∀ j, w. (6f)

In (6) each scenario w corresponds to a joint real-
ization of the RT price λRT

w and EV uncertain parame-
ters Cup

w ,C
d
w,P

up
w ,P

d
w. Because of the RT market’s smaller

time granularity, we use j|m to express the quotient
(j − 1)/

mn + 1 for the time steps j which are included
within the hourly step m of the DA market. Objective function
(6a) minimizes the aggregator’s expected cost in DA and RT
markets. Constraints (6b) and (6c) express the power/energy
limitations of the battery model, (6d) describes the energy
state evolution, and (6e) imposes the initial energy condition.

Constraint (6f) limits the total consumption to the level of a
contracted capacity P cap

j at each time step j, only when the
DSO service is requested. Problem (6) is formulated as a cost-
minimization problem. If drivers do not pay for charging (as
is the case for many of the chargers in the dataset, which are
installed in workplaces) or pay a fixed price, then casting (6)
as a utility-maximization problem is equivalent. If a reliable
and realistic price sensitivity value is available, then it is
straightforward to transform (6) to a utility maximization
problem. Since (6) is a linear program, its computational
requirements are in general low, even with a large number
of scenarios.

Unlike [27], where the recourse actions are affine, we
employ second-stage decision variables to obtain further flexi-
bility by allowing different recourse actions for each scenario.
It is possible to express EV uncertainty via confidence intervals
around the expected values of the power and energy limits,
which transforms the problem into a hybrid robust-stochastic
optimization problem [25]. This alternative formulation has the
advantage of avoiding infeasible solutions for some special
EV session realizations, but in general results in more con-
servative solutions as it fails to capture a number of statistical
properties of the uncertainty. Techniques to control the level of
conservativeness of the robust optimization solution can also
be used [28]. However, the issue of evolving EV uncertainties
may not be readily addressed. We retain the advantages of
using scenarios while guaranteeing robustness against EV
uncertainty by employing a worst-case identification method,
which is presented in the following section.

IV. EV UNCERTAINTY CHARACTERIZATION

We use a dataset from year 2013 consisting of 412 level 2
commercial chargers with a capacity of 6.6 kW each, installed
in sites across the state of California. The majority of the
sessions occur during working days, and for this reason load
is considerably lower during the weekends and holidays. Since
we are estimating the cost of a capacity service, we neglect
days with very low charging needs because in those days a
capacity limitation has a negligible effect on opportunity cost;
this results in 245 working days per year. A key characteristic
of the dataset is that chargers utilization increases over time.
This reflects the increasing EV adoption and introduces ad-
ditional uncertainties in the chargers operation, both from an
aggregator’s and DSO’s perspective.

We used a 5−minute time step to align the battery model’s
granularity with that of the RT market. For each session the
exact arrival and departure times were recorded, as well as the
energy consumption with a 15−minute sample rate. From this
information the battery model’s parameters Cup,Cd,Pup,Pd

for each day can be calculated with a 5−minute resolution,
which improves the accuracy of the aggregated model. We
desire to model the daily EVs operation and thus calculate
Cup,Cd,Pup,Pd for each day. For sessions covering more
than one day we distributed the energy needs to each day,
proportionally to the time the EV is parked. Finally, Pd was
found to be very small and its effect negligible; consequently,
we consider the lower power limit to be equal to zero.
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Day-to-day variations of the uncertain parameters can be
quite large; this variation decreases as the aggregation size
increases, as shown in [23] and verified by our data. Since
uncertainty is evolving over time, describing it through distri-
butions constructed by all past realizations or sampling over
all of them does not capture the changes in the uncertainty set.
In Fig. 2 the average values of Cup, Cd and Pup over 20 days
with a 5−minute time resolution for 412 EV chargers for two
different periods are shown.

Fig. 2: Evolution of the average energy (upper subplot) and power (lower
subplot) limits of 412 EV chargers during two 20-day sample periods.

It is important to identify the worst-case realization of the
EVs uncertainty to provide a robust capacity limitation service.
This is not straightforward when intertemporal constraints
exist, and when the aggregator wants to retain robustness
against an evolving uncertainty. To avoid overly conservative
bounds, we propose a method to address this uncertainty.
We introduce variable Eacu

j , which expresses the maximum
possible accumulated consumption at each time step. In other
words, Eacu

j gives the accumulated energy corresponding to the
maximum load P up

j for each time step j, unless a capacity limit
(in terms of power or energy) is imposed, which limits energy
consumption. Eacu

j cannot take a value larger than Cup
j because

this will violate the aggregate upper energy limit. Besides, a
value of Eacu

j smaller than Cd
j would result in user disutility,

i.e. not enough energy provided to cover all user requirements.
Since we require satisfaction of all user energy needs, the
corresponding capacity values P cap

j would be infeasible. We
calculate Eacu

j as a function of P cap
j as follows

Eacu
j (P cap

j )=Eacu
j−1+min(min(P up

j , P
cap
j )·∆T ·η, Cup

j ),∀j. (7)

For a robust service formulation, P d
j must always be smaller

than P cap
j , and as a result it is necessary that this condition is

met for all EV scenarios. Finally, if the capacity limitations
only cover some time periods of the day, then a sufficiently
large value can be assigned to P cap

j for the remaining time
steps to make the limitation inactive. We applied three different
capacity limits Pcap of 500, 300 and 130 kW from 08.00 to
17.00 for two different days and calculated Eacu. In Fig. 3 the
results are shown, where it can be seen that a capacity limit
of Pcap = 130 kW is feasible for the first case (upper subplot)

but infeasible for the second case (lower subplot), as the lower
energy limit is violated, which would result in user disutility.

Fig. 3: Energy limits and Eacu
j as a function of three different Pcap levels (i.e.

500, 300 and 130 kW) for two different sample days in 2013.

We introduce P cap,*
d to denote the minimum value of Pcap,

which guarantees that Eacu(P cap,∗
d ) ≥ Cd for a given day d.

Note that in this work we consider that the DSO asks for a
capacity limit whose value is the same for the whole period
and thus P cap,*

d is scalar. If this period was divided in n sub-
periods, then P cap,*

d would be expressed as an n−dimensional
feasible region. The advantage of using P cap,*

d , instead of
employing a robust formulation of (6), is that a capacity limit
profile which satisfies this condition guarantees that both user
needs and capacity limitation requirements are met, since all
parameters are considered via (7). In Fig. 4 the value of P cap,∗

d

corresponding to a capacity limit from 08.00 to 17.00 is shown
for all working days of 2013. The gradual increase of P cap,∗

d

can be seen, which reflects the increasing chargers utilization
over year 2013. In the rest of the paper we will use 2013 EV
data as if it corresponded to year 2017, since more recent EV
data was not available.

V. EV AGGREGATOR’S OFFERING STRATEGY

In this section, a strategy for estimating an aggregator’s
opportunity cost for different capacity limit values is proposed.
The goal of this paper is to propose a strategy for calculating
this cost for varying capacity limit values. By utilizing this
knowledge, an aggregator may bid in a strategic manner. How-
ever, strategic bidding (i.e. treating Pcap as a variable instead
of a parameter) would require a game-theoretical model, and
necessitate the aggregator to have knowledge and experience
from market operation, which is outside the scope of this
paper. In subsection V-A we describe how the aggregator’s
opportunity cost, incurred by providing a capacity limitation
service in a given period, is calculated. In subsection V-B we
propose a method to forecast this cost during an upcoming
period with unknown electricity prices and EV uncertainty
realizations.
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Fig. 4: Daily value of P cap,∗
d for all working days of 2013 and a capacity

limit imposed from 08.00 to 17.00.

A. Opportunity Cost Calculation

Our goal is to calculate the aggregator’s opportunity cost
during the contracted period as a result of the capacity
limitation service, instead of the actual operational cost. To
obtain the opportunity cost for each predefined Pcap profile, we
subtract the operational cost that corresponds to the solution
of (6) from the unconstrained cost, i.e., the cost obtained
by removing (6f). By repeating this process for the whole
contracted period, we can calculate the total opportunity cost
as a function of Pcap.

We first use a set of scenarios W to obtain the DA schedule
by solving (6) for each contracted day and Pcap profile, as
described in subsection III-B. Afterwards, for each Pcap profile
we solve the deterministic variant of (6) using the out-of-
sample realized RT prices and EV uncertainty. We use a set of
randomly chosen historical RT prices and past EV realizations
to construct W . Once we have calculated past opportunity cost
values, we can use forecasting methods to estimate the cost
of an upcoming period. The computational time required for
calculating past opportunity cost values is comparatively low,
due to the linear structure of (6).

B. Opportunity Cost Forecast

1) Cost factors decomposition: We introduce QPcap,d to
denote the actual opportunity cost for day d and capacity
limit Pcap. Opportunity cost depends on both the unknown
EV realizations and electricity prices for an upcoming period
[d1, d2]. We use superscript MA to denote the moving average
and (̂·) a forecasted quantity. Since the service is offered over
several days, we are interested in predicting the cost’s moving
average (MA) over tMA days, given by

QMA
Pcap,d =

i=d∑
i=d−tMA+1

QPcap,i/tMA. (8)

Even though past electricity prices are available for several
years, our EV data covers one year. We decompose the effect
of EV realizations and prices to use Np years of prices without
the corresponding EV data. We use UrPcap,t to denote the price
component of opportunity cost, obtained by averaging the
result of (6) for the realized prices of day t and the last Ne EV
realizations prior to r. Note that t indexes over all days with
available prices, whereas d over days with available EV data
and t = 245·Np+d; for the following example we use Np = 0

and thus d and t coincide. The MA of the price component
UrPcap,t is calculated as

UMA
Pcap,d =

i=d∑
i=d−tMA+1

Ud−tMA+1
Pcap,i

/tMA. (9)

Adjustment factor YPcap,d = QMA
Pcap,d − U

MA
Pcap,d represents the

error of QMA
Pcap,d by using Ne EV realizations prior to d− tMA

instead of the actual ones. In Fig. 5 the mean average error
(MAE) of the adjustment factor for different Ne values is
shown; Ne = 5 results in the smallest error values and we
use this value for the rest of the paper. The role of the cost
factors decomposition and the use of past electricity prices
will be more evident in the forecasting evaluation, and the
reduction of the prediction intervals (PIs).
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Fig. 5: MAE of the adjustment factor for different Ne values.

2) Forecasting: The first step is to identify the minimum
capacity limit (P cap,∗

d , as introduced in Section IV), which
the aggregator can guarantee for the contracted period (equal
to 20 working days in our study). We choose to train an
Autoregressive Integrated Moving Average (ARIMA) model
on the available P cap,∗ values preceding the contracted period,
but other forecasting methods can be used as well. We used an
ARIMA model because it is an established, easy to implement
technique, suitable for our application. A comparison between
different techniques is outside the scope of this paper, but is
an interesting path for future research. The residual analysis
showed that the normality assumption is a good approxima-
tion. We forecast P cap,∗ for 20 steps ahead, as well as the 99 %
PI. The results for days 81− 100 are shown in Fig. 6, where
the predicted maximum P cap,∗ value is equal to 250 kW with
99 % probability.
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Fig. 6: ARIMA forecast of P cap,∗ for days 81− 100.

We denote by UMA,z
Pcap,d

the cost where d − tMA is replaced
in (9) by a fixed day z, which corresponds to the start of
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the forecasting horizon (day d1). For illustrative purposes, we
forecast UMA,z

Pcap,t
for days 81− 100 (d1 = 81), a capacity limit

of 500 kW and Np = 2, resulting in 570 training data samples.
UMA,81
500,t corresponds to the MA calculated by using prices of

day t and the average cost for EV realizations from days 76−
80. We fitted an ARIMA model on the available 570 data
samples to forecast ÛMA,81

500,t for 20 steps ahead, along with the
95 % PI. The results are shown in Fig. 7. The PI is obtained
by assuming normally distributed residuals, which was found
to be a good approximation.
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Fig. 7: ARIMA forecast of cost price component UMA,81
500,t .

This forecast method does not require any direct DA/RT
price forecasting, which would need much more complicated
models and information which may not be available (such as
weather data, renewable production data and possibly network
topology or status of conventional generation among others).
Even in that case, there is always significant uncertainty
especially in the RT prices, which consequently cannot be
accurately predicted. Instead, we propose a simpler method
which relies on a direct forecast of opportunity cost, bypassing
the need for modeling the DA/RT prices. Next, we forecast
adjustment factor Y500,d for days 81−100 to capture the effect
of the time-evolving EV realizations. We calculated Y500,d as
explained in the previous subsection and trained an ARIMA
model to use for the prediction. The results are shown in Fig.
8. Similar to the previous forecast model the normality of the
residual distribution was found to be a good approximation.
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Fig. 8: ARIMA forecast of the adjustment factor Y MA
500,d.

3) Strategy Summary: In Fig. 9, a flowchart summarizing
the steps required to construct an offering curve are shown.
For simplicity we present the case where Pcap is scalar, but it is
straightforward to generalize the process for multidimensional
capacity limits. First, for a given period [d1, d2] the maximum
P cap,∗ value is forecasted, and is initially used as Pcap. Next,

Start 
Prediction 

period: 
[d1, d2] 

Forecast max 𝑷𝑷�𝐜𝐜𝐜𝐜𝐜𝐜,∗ 
value. Set 

𝑷𝑷𝐜𝐜𝐜𝐜𝐜𝐜 = 𝐦𝐦𝐜𝐜𝐦𝐦 𝑷𝑷� 𝐜𝐜𝐜𝐜𝐜𝐜,∗  

𝑸𝑸�𝑷𝑷𝐜𝐜𝐜𝐜𝐜𝐜,𝒅𝒅𝟐𝟐
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Fig. 9: Flowchart describing the process of constructing an offering curve for
an upcoming service period.

the training data corresponding to the two cost components is
calculated. This data is used to train the models and forecast
Q̂MA

Pcap,d2
= ÛMA,d1

Pcap,t2
+ ŶPcap,d2 , where t2 = 245 ·Np + d2. The

process is repeated by increasing Pcap, until the forecasted
cost becomes smaller than a value ε, indicating that Pcap is
not a binding constraint. This results in an offering curve with
opportunity cost expressed as a function of Pcap. Note that
steps ∆P , by which Pcap is increased, can be variable. More
specifically, for values close to the maximum capacity limit
the step could be small, and gradually increase, depending on
the sensitivity of the forecasted values on Pcap.

VI. CASE STUDY

In this section we evaluate the offering strategy and show
how an aggregator can construct offering curves to participate
in capacity limit auctions. The service covers a period from
8.00 am to 17.00 pm in each working day. Before constructing
an offering curve, the minimum value of P cap,* for the service
period must be forecasted. In Fig. 6 we showed an ARIMA-
based forecast of the minimum P cap,* for a horizon equal to
20 days. The 99th percentile P̃ cap,∗

d is used as a forecast, and
the accuracy of the model Jd is calculated as

Jd =max(P̃ cap,∗
d−tMA+1, . . . , P̃

cap,∗
d )−max(P cap,*

d−tMA+1, . . . , P
cap,*
d ).

(10)
The results for 150 days are shown in Fig. 10. The forecast

errors are always smaller than 50 kW, and decrease with time.
After d = 130 the average forecast error is 10 kW, and in the
few cases where the limit is underestimated, this is limited to
an error of 5− 15 kW. A very conservative estimate of P cap,*

would result in the aggregator not bidding for small capacity
limits. As we will show next, this is important because of the
exponential increase of the opportunity cost as the capacity
limit decreases. A good forecast of P cap,* thus allows the
aggregator to minimize the potential loss of revenue.

Before calculating an offering curve, we will elaborate on
how this is constructed based on the time-series forecasts
described in Section V. The first model predicts opportunity
cost by considering the known and lagged EV realizations; the
second model predicts the required cost adjustment caused
by the changes in EV patterns. The summation of the two
predictions gives the opportunity cost forecast of the upcoming
period. A total of 100 scenarios were used when solving (6),
created by the joint realization of five EV scenarios and 20
RT prices scenarios. Since the residuals of the models are
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Fig. 10: Accuracy of the forecasting model for the minimum capacity limit
for a forecast horizon equal to 20 days.

normally distributed, we used the obtained expected values and
standard deviations to create sample values for the forecasts.
In Fig. 11, an illustrative example of these forecasts is shown
for a period covering days 181 − 200; electricity prices and
EV realization data are available until that day. The sum of the
generated samples produces the distribution of the prediction
for the opportunity cost. From this distribution we calculated
the expected value, along with the 2.5th and 97.5th percentiles
to derive the 95 % PI. For the optimization problems MAT-
LAB and the YALMIP toolbox [29] were used, with Gurobi
8.0 [30] as the solver. The computational requirements of the
proposed strategy are relatively low due to the linear nature of
(6), with most of the computational time devoted to calculating
training data.
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Fig. 11: Forecasts for a capacity limit of 500 kW and a period covering days
181− 200.

This process is repeated for a range of capacity limits to
obtain an offering curve. Figure 12 shows such a curve for
the considered period. A first observation is that both the
forecasts and the actual opportunity cost exhibit an exponential
behavior. This means that for relatively high capacity limits
the opportunity cost of such a service is low, but increases
significantly as the capacity limit takes values close to the
physical delivery limitations. Another observation is that the

PIs significantly increase as the capacity limit decreases,
reflecting the higher cost uncertainty for an aggregator man-
aging a portfolio closer to its physical power limits. Finally,
the accuracy of the prediction deteriorates as the capacity
limit decreases. This happens because the variability of the
opportunity cost is larger for smaller capacity limits.
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Fig. 12: Aggregator’s offering curve for a period covering days 181− 200.

The accuracy of the forecast depends on the time of the
prediction. It is very hard to forecast large increases or
decreases in opportunity cost, because these are caused by
rare scenarios of the DA/RT electricity prices. For example,
days with strongly negative RT electricity prices result in a
large increase of opportunity costs, but such events are hard to
predict. The accuracy of the forecasting model was evaluated
by making new predictions every day for a capacity limit of
500 kW and a service duration of 20 days. In each day d,
the actual and the predicted opportunity cost correspond to a
service period covering days d− 19,. . . , d, with EV and price
data being progressively available. More specifically, data
until, and including, day d− 20 is available when forecasting
costs for day d.

To reduce the PIs of the forecasts, we utilize past electricity
prices data. One can observe from Fig. 7 that the price
component of the opportunity cost is confined within a range
of values. We use the 97.5th percentile of the price component
of the first two years of the training dataset as an upper bound
for the PI, and the 2.5th percentile as a lower bound. In other
words, if the ARIMA model’s 97.5th percentile prediction is
larger than the 97.5th percentile from the first two years of
the dataset, it is capped to this value. Similarly, the historical
2.5th percentile serves as a lower limit for the predictions. The
forecasting results are shown in Fig. 13.
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Fig. 13: Forecasting accuracy for 165 days and a capacity limit of 500 kW.
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The accuracy of the prediction is acceptable, without re-
sulting in a bias over 165 predictions (the average forecasting
error is less than 25 USD), and with a MAE of less than 120
USD. As already mentioned, large changes in the opportunity
cost cannot be predicted by the model because these do not
exhibit a seasonal pattern and are rather determined by rare
scenarios in the RT prices. The 95 % PIs were significantly
reduced by utilizing the training dataset obtained from the cost
factors decomposition. Thus, the precision of the forecasting
was considerably improved, with 9 violations of the PIs, which
is roughly equal to 5 % of the samples.

The presented analysis was conducted by considering a risk-
neutral participation of the aggregator in the DA and RT mar-
kets. To reduce risk exposure, the aggregator can use a risk-
averse strategy by including conditional value at risk (CVaR)
when solving the two-stage stochastic optimization problem.
The CVaR formulation of (6) is given in the Appendix. The
simulations were repeated by setting the CVaR confidence
level α = 0.95, and using two different values for weighting
parameter β: 1 and 10 (the outcome for β = 0 corresponds
to the risk-neutral case). Parameter β introduces a trade-off
between the expected cost and the risk for the aggregator,
with higher values resulting in a more risk-averse behavior.
The average daily cost under different values for β are shown
in Table I, for both the unconstrained operation and the case
where a limit of 500 kW is set. As expected, higher values of β
result in an increase of the average cost for the aggregator, but
also limit the very high cost values, by considerably reducing
the 95-percentile values.

Unconstrained Operation P cap = 500 kW

β
Average

daily cost
95-percentile
of daily cost

Average
daily cost

95-percentile
of daily cost

0 40.5 211.5 64.5 249.6
1 45.6 180.8 70.2 208.3
10 54.6 156.7 76.5 170.3

TABLE I: Average and 95−percentile values of the actual daily costs in USD
for different β values.

Next, the offering curve covering the same period as the
one in Fig. 12 was constructed, with β = 10. The offering
curves for both β = 0 and β = 10 are shown in Fig. 14.
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Fig. 14: Aggregator’s offering curve for a period covering days 181 − 200
with β = 10.

In Table II the average and 95−percentile values of the
actual opportunity costs are shown. A parameter β equal

to 10 reduces the average value of the opportunity cost by
approximately 7 % (for β = 1 the average value is almost
equal to the risk-neutral case). Interestingly, the effect on
the 95−percentile values is much more pronounced, with a
considerable increase in the risk-averse cases. This behavior
occurs because costs in (6) are highly dependent on the out-
of-sample realized RT prices and EV uncertainty, which are
not included in the uncertainty set W . A more conservative
DA schedule may occasionally result in high losses in RT, and
thus in a higher volatility in the opportunity costs.

The results of Table II refer to daily opportunity costs, and
are not directly transferable to the 20-days average values
used in the offering curves. As seen in Fig. 14, the actual
opportunity costs for the examined time period were indeed
smaller for β = 10. The higher 95−percentile values of the
opportunity costs for the risk-averse case (as reported in Table
II) also result in larger PIs. However, the actual opportunity
costs and the predictions show a similar (exponential) behavior
for the risk-averse cases, whereas larger β seems to result (on
expectation) in lower but more volatile opportunity costs. It
is interesting to note that a risk-averse strategy reduces the
extreme cost values (on a daily basis) for the aggregator, but
it has the opposite effect on opportunity cost. This is to a
large extent offset by the mid-term nature of the market and
the averaging of opportunity costs.

β
Average daily

opportunity cost
95-percentile of daily

opportunity cost
0 23.5 56.2
1 23.8 65.7

10 21.8 68.2

TABLE II: Average and 95−percentile values of the actual daily opportunity
costs in USD for different β values and P cap = 500 kW.

VII. CONCLUSION

In this paper we investigated how an aggregator can con-
struct mid-term capacity limit offering curves, considering
participation in the DA and RT markets. These curves reflect
the aggregator’s opportunity cost in the DA/RT markets,
when offering such a DSO service. We proposed a practical
and straightforward method, which does not require explicit
forecasting of the evolving EV charging scenarios or electricity
prices. The opportunity cost forecasting method decomposes
the effect of electricity prices and EV realizations, thus ac-
counting for evolving EV patterns and enabling the use of past
electricity price data. The presented approach can be used for
other DERs, such as thermal loads, with weather scenarios
replacing the EV uncertainty. However, since weather data
exhibits a strong seasonal behavior and historical data is more
readily available, the cost decomposition part can be omitted.

Our results, based on real data from a large number of
commercial EV chargers, showed that the opportunity cost
of an aggregator can be forecasted with reasonable accu-
racy. Historical data can be used to achieve a significant
improvement in the model’s precision. However, as capacity
limits decrease, opportunity costs and PIs show an exponential
increase, and the range of the PIs increases considerably. Our
results indicate that such a simple mechanism could provide
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operational guarantees to DSOs and avoid overloading with a
relatively low cost, as long as the capacity limits are not close
to the physical limitations of the DERs.

As potential future work, it is of interest to investigate how
the participation of DERs in the ancillary service market can
be included in the opportunity cost forecasting, and how this
would affect the shape of the offering curves. Moreover, the
performance of different forecasting techniques needs to be
compared. Finally, we intend to evaluate how such a capacity
service can be used as an alternative to grid reinforcement,
from a social welfare maximization perspective.

APPENDIX

Let f(w) denote the aggregator’s cost under scenario real-
ization w:

f(w) =

NDA∑
m=1

PDA
m · λDA

m +

NRT∑
j=1

PRT
j,w · λRT

j,w ·∆T. (11)

Following [31], [32], CVaR is incorporated into (6) as:

min
U,η,ζ

∑
w∈W

πwf(w)− β
[
ζ − 1

1− α
∑
w∈W

πwηw
]

(12a)

s.t. (6b)− (6f) (12b)
ζ + f(w) ≤ ηw, ∀ w (12c)
ηw ≥ 0, ∀ w. (12d)

ACKNOWLEDGEMENT

We would like to thank ChargePoint for providing the data
used in this study.

REFERENCES

[1] R. A. Verzijlbergh, L. J. De Vries, and Z. Lukszo, “Renewable energy
sources and responsive demand. Do we need congestion management in
the distribution grid?,” IEEE Trans. Power Syst., vol. 29, no. 5, pp. 2119–
2128, 2014.

[2] “Ecogrid 2.0 [online].” Available: http://www.ecogrid.dk/en/home uk.
Accessed: 07/31/2018.

[3] S. Huang, Q. Wu, Z. Liu, and A. H. Nielsen, “Review of congestion
management methods for distribution networks with high penetration of
distributed energy resources,” IEEE PES ISGT Europe, pp. 1–6, 2014.

[4] R. Li, Q. Wu, and S. S. Oren, “Distribution locational marginal pricing
for optimal electric vehicle charging management,” IEEE Trans. Power
Syst., vol. 29, no. 1, pp. 203–211, 2014.

[5] N. O’Connell, Q. Wu, J. Østergaard, A. H. Nielsen, S. T. Cha, and
Y. Ding, “Day-ahead tariffs for the alleviation of distribution grid
congestion from electric vehicles,” Elect. Power Syst. Res., vol. 92,
pp. 106–114, 2012.

[6] S. Huang, Q. Wu, S. S. Oren, R. Li, and Z. Liu, “Distribution locational
marginal pricing through quadratic programming for congestion man-
agement in distribution networks,” IEEE Trans. Power Syst., vol. 30,
no. 4, pp. 2170–2178, 2015.

[7] S. Hanif, T. Massier, H. Gooi, T. Hamacher, and T. Reindl, “Cost optimal
integration of flexible buildings in congested distribution grids,” IEEE
Trans. Power Syst., vol. 32, no. 3, pp. 2254–2266, 2017.

[8] S. Hanif, H. B. Gooi, T. Massier, T. Hamacher, and T. Reindl,
“Distributed congestion management of distribution grids under robust
flexible buildings operations,” IEEE Trans. Power Syst., vol. 32, no. 6,
pp. 4600–4613, 2017.

[9] S. Huang, Q. Wu, L. Cheng, Z. Liu, and H. Zhao, “Uncertainty
management of dynamic tariff method for congestion management
in distribution networks,” IEEE Trans. Power Syst., vol. 31, no. 6,
pp. 4340–4347, 2016.

[10] R. D. S. Ferreira, L. A. Barroso, P. R. Lino, M. M. Carvalho, and
P. Valenzuela, “Time-of-use tariff design under uncertainty in price-
elasticities of electricity demand: A stochastic optimization approach,”
IEEE Trans. on Smart Grid, vol. 4, no. 4, pp. 2285–2295, 2013.

[11] B. Zhou, R. Yang, C. Li, Y. Cao, Q. Wang, and J. Liu, “Multiobjective
model of time-of-use and stepwise power tariff for residential consumers
in regulated power markets,” IEEE Syst. J., vol. 12, no. 3, pp. 2676–
2687, 2018.

[12] P. Olivella-Rosell et al., “Optimization problem for meeting distribution
system operator requests in local flexibility markets with distributed
energy resources,” Appl. Energy, vol. 210, pp. 881–895, 2018.

[13] S. S. Torbaghan, N. Blaauwbroek, P. Nguyen, and M. Gibescu, “Local
market framework for exploiting flexibility from the end users,” Inter-
national Conference on the European Energy Market, EEM, 2016.

[14] K. Heussen, D. E. M. Bondy, J. Hu, O. Gehrke, and L. H. Hansen, “A
clearinghouse concept for distribution-level flexibility services,” in IEEE
PES ISGT Europe, pp. 1–5, 2013.

[15] J. Villar, R. J. Bessa, and M. Matos, “Flexibility products and markets:
Literature review,” Elect. Power Syst. Res., vol. 154, pp. 329–340, 2018.

[16] D. B. Nguyen, J. M. A. Scherpen, F. Bliek, W. Kramer, and G. K. H.
Larsen, “Distributed optimal control and congestion management in the
universal smart energy framework,” in European Control Conference
(ECC), pp. 910–915, 2016.

[17] R. Philipsen, M. de Weerdt, and L. de Vries, “Auctions for congestion
management in distribution grids,” in 13th International Conference on
the European Energy Market (EEM), pp. 1–5, 2016.

[18] N. Li, L. Chen, and M. A. Dahleh, “Demand response using linear
supply function bidding,” IEEE Trans. on Smart Grid, vol. 6, no. 4,
pp. 1–12, 2015.

[19] Y. Xu, N. Li, and S. H. Low, “Demand response with capacity con-
strained supply function bidding,” IEEE Trans. Power Syst., vol. 31,
no. 2, pp. 1377–1394, 2016.

[20] Y. K. Renani, M. Ehsan, and M. Shahidehpour, “Optimal transactive
market operations with distribution system operators,” IEEE Trans.
Smart Grid, vol. 9, no. 6, pp. 6692–6701, 2018.

[21] M. N. Faqiry, L. Edmonds, H. Zhang, A. Khodaei, and H. Wu,
“Transactive-market-based operation of distributed electrical energy stor-
age with grid constraints,” Energies, vol. 10, no. 11, pp. 1–17, 2017.

[22] D. P. Chassin and D. Rondeau, “Aggregate modeling of fast-acting
demand response and control under real-time pricing,” Appl. Energy,
vol. 181, pp. 288–298, 2016.
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