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Abstract

The magnitude of power fluctuations at large offshore wind farms has a significant
impact on the control and management strategies of their power output. If focusing
on the minute scale, it looks like different regimes yield different behaviours of the
wind power output. The use of statistical regime-switching models is thus investi-
gated. Regime-switching approaches relying on observable (i.e. based on recent wind
power production) or non-observable (i.e. a hidden Markov chain) regime sequences
are considered. The former approach is based on either Self-Exciting Threshold Au-
toRegressive (SETAR) or Smooth Transition AutoRegressive (STAR) models, while
Markov-Switching AutoRegressive (MSAR) models comprise the kernel of the lat-
ter one. The particularities of these models are presented, as well as methods for
the estimation of their parameters. The competing approaches are evaluated on a
one-step ahead forecasting exercise with time-series of power production averaged
at a 1, 5, and 10-minute rate, at the Horns Rev and Nysted offshore wind farms in
Denmark. For the former wind farm, the one-step ahead Root Mean Square Error
(RMSE) is contained between 0.8 and 5% of installed capacity, while it goes from
0.6 to 3.9% of installed capacity for the case of Nysted. It is shown that the regime-
switching approach based on MSAR models significantly outperforms those based
on observable regime sequences. The reduction in one-step ahead RMSE ranges
from 19 to 32% depending on the wind farm and time resolution considered. The
presented results clearly demonstrate that the magnitude of fluctuations of offshore
wind power cannot be considered as simply influenced by the generation level only.
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1 Introduction

Future developments of wind power installations are more likely to take place
offshore, owing to space availability, less problems with local population ac-
ceptance, and more steady winds. This is especially the case for countries that
already experience a high wind power penetration onshore, like Germany and
Denmark for instance. This latter country hosts the two largest offshore wind
farms worldwide: Nysted and Horns Rev, whose nominal capacities are of 165.5
and 160 MW, respectively. Today, each of these wind farms can supply alone
2% of the whole electricity consumption of Denmark (Sweet , 2002).

Such large offshore wind farms concentrate a high wind power capacity at a
single location. Onshore, the same level of installed capacity is usually spread
over an area of significant size, which yields a smoothing of power fluctua-
tions (Focken et al , 2002). This smoothing effect is hardly present offshore,
and thus the magnitude of power fluctuations may reach very significant lev-
els. For comparison, while studies of wind power fluctuations by Holttinen
(2005) or Siebert (2008) (at the level of the whole Denmark area) mention a
standard deviation of wind power production between 20 and 22% of installed
capacity, that for large offshore wind farms like Nysted and Horns Rev is in
the range of 30-38% of installed capacity. A very comprehensive illustration of
the difference between the magnitude of power fluctuations for geographically
dispersed wind capacities onshore and for concentrated capacities offshore is
given in (Sørensen et al , 2007). Modelling the power fluctuations for the spe-
cific case of offshore wind farms is a current challenge (Hendersen et al , 2003),
for better forecasting offshore wind generation, developing control strategies,
or alternatively for simulating the combination of wind generation with stor-
age. The present paper addresses this issue by exploring the applicability and
performance of some statistical models.

Operators of offshore wind farms often observe abrupt changes in power pro-
duction. The fast variations can be related to the turbulent nature of the
wind. They are smoothed out when considering the cumulative production for
the wind farm, since turbines are spread over a pretty large area. In parallel,
when inspecting power production data averaged at a few-minute rate, one
observes succession of periods with power fluctuations of significantly variable
magnitude, which may be explained by local atmospheric changes e.g. front-
line passages and rain showers (Akhmatov , 2005; Sørensen et al , 2008). This
phenomenon can already be clearly seen from time-series of wind speed mea-
surements obtained at the meteorological mast at Horns Rev (freely available
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at www.winddata.com). Offshore wind speed fluctuations are then amplified
or dampened by the nonlinear power curve of wind parks, yielding wind power
fluctuations exhibiting the same kind of regime-based behaviour. This is illus-
trated in Fig. 1, which shows a 11-day episode with wind power production at
Horns Rev consisting of 10-minute averages, with successive periods with fluc-
tuations of significantly different magnitude (e.g. small on 13.07, medium on
11.07 and very large on 17.07). It seems that local meteorological phenomena
add complexity to the modelling of wind power production, which is already
non-linear and bounded owing to the characteristics of the wind-to-power
conversion process. The example of the influence of wind direction on wind
power fluctuations at Horns Rev is discussed in (Akhmatov , 2007). The suc-
cession of periods with power fluctuations of lower and larger magnitude calls
for the use of regime-switching models. Here, it is explained how to employ
Self-Exciting Threshold AutoRegressive (SETAR) models, Smooth Transition
AutoRegressive (STAR) models, as well as Markov-Switching AutoRegressive
(MSAR) models for that purpose. Their performance are evaluated on a one-
step ahead forecasting exercise, and compared to those of linear models, i.e.
AutoRegressive Moving Average (ARMA) models. The available data consist
in time-series of power production averaged at a 1, 5, and 10-minute rate, for
the Horns Rev and Nysted wind farms. The main objective of the present pa-
per is to show that theunderlying regime is not governed by the level of wind
generation (as it is the case when employing STAR or SETAR models), but
instead by complex local meteorological phenomena, the influence of which
can be captured by MSAR models.

Here is Figure 1

2 From linear to regime-switching models

Generated wind power is considered hereafter as a stochastic process for which
statistical models are set up in order to describe its temporal evolution. The
notation yt is used for denoting both the state of the stochastic process at time
t and the measured value at that time. All the measured power values over
the considered period are gathered in the time-series {yt}, t = 1, . . . , T , where
T is the total number of successive observations. The set Ωt = (y1, y2, . . . , yt)
that contains all the observations up to time t, is referred to as the information
set. In the present paper, it is considered that no explanatory variable is used
for describing the evolution of {yt}, i.e. our framework is that of univariate
time-series modelling.

As a starting point, the well-known linear ARMA model is presented. Such
model encompasses a Moving Average (MA) part and an AutoRegressive (AR)
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part. Such model serves as a basis for constructing the regime-switching mod-
els. The term ‘regime’ originates from the assumption such that the considered
stochastic process switches between a finite number of distinct (and most of-
ten linear) models. Denote by R the number of these regimes. The SETAR
and STAR models are consequently presented, with focus to the estimation
of their parameters, and their use for time-series forecasting. For these two
families of models, the switches from one regime to the other are governed
by an observed process, i.e. by some function of lagged values of {yt} for the
specific case of univariate time-series models.

2.1 The baseline ARMA model

The linear ARMA(p, q) model, of order p in its AR part and order q in its MA
part, is given by

yt = θ0 +
p
∑

i=1

θiyt−i +
q
∑

j=1

φjεt−j + εt (1)

where {εt} is a white noise process, i.e. a purely random process with zero
mean and variance σε

2. The AR(p) part corresponds to the weighted sum
of the p lagged values of {yt}, and the MA part to the weighted sum of q

past values of {εt}. If q is zero the model simplifies to an AR(p) model, and
inversely if p equals zero, the model given by Eq. (1) is simply an MA(q). Let
us denote by Θa the parameter set, that is,

Θa = (θ0, . . . , θp, φ1, . . . , φq, σε)
⊤ (2)

with .⊤ the transposition operator.

At time t − 1, the set of parameters Θa can be used for calculating the one-
step ahead point forecast ŷt|t−1 for the considered ARMA(p, q) process. This
prediction corresponds to the conditional expectation of ŷt given Θa and the
information set Ωt−1, and is readily given by

ŷt|t−1 = E(yt|Ωt−1, Θa) = θ0 +
p
∑

i=1

θiyt−i +
q
∑

j=1

φjεt−j (3)

For further lead times, the above equation can be used recursively.

ARMA models have already been applied for the modelling of wind power
time-series. For instance, Milligan et al (2003) have found them appropriate
for producing 10-minute ahead forecasts of wind generation for onshore wind
farms. A drawback of these linear models is that the variance of the residuals
is the same whatever the level of the predictand or of some external variables
that may have an influence on the stochastic process. However, Madsen (1996)
has shown that only little could be gained by applying more complex models
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i.e. bilinear or STAR models for such short horizons. In the present paper,
ARMA models are considered as a benchmark for comparison with the more
advanced regime-switching models introduced hereafter. Their parameters are
determined using Maximum Likelihood (ML) estimation with a Gaussian as-
sumption on the distribution of residuals (Chatfield , 2004). Note that under
the assumption of {εt} being Gaussian, ML estimation is equivalent to Mini-
mum Mean Square Error (MMSE) estimation (Madsen , 2007), which will be
used instead for some of the models introduced below.

2.2 The SETAR model

The Threshold AutoRegressive model (TAR) is a piecewise linear model, for
which an AR model is considered in each of the R regimes. For the specific case
of the Self-Exciting TAR (SETAR) model, the current regime is determined by
a function of lagged values of the time-series (Tong , 1990), which yields pretty
abrupt switches from one regime to the other. These regimes are defined by
threshold values rk, k = 1, 2, . . . , R−1, which correspond to the upper bounds
of the intervals where given linear models are active. SETAR models have
already been successfully applied for modelling exchange rates (Goering et al ,
1998) or real estate time-series (Brooks and Maitland-Smith , 1999) among
others.

The SETAR(R; p1, p2, . . . , pR) model is given by

yt = θ
(mt)
0 +

pmt
∑

i=1

θ
(mt)
i yt−i + σmt

εt (4)

where for a given regime k, pk and σk
2 denote the order of the AR model

and the related variance of the noise sequence. {εt} is a Gaussian white noise
process with unit variance, εt ∼ N (0, 1), such that εt is independent of Ωt−1.
{mt} is the sequence of regimes, taking values in {1, 2, . . . , R}, for which each
mt is defined by

mt =







































1, yt−d ∈ ] −∞; r1] (regime 1)

2, yt−d ∈ ]r1; r2] (regime 2)
...

...

R, yt−d ∈ ]rR−1;∞[ (regime R)

(5)

with d seen as a lag parameter. By definition, the SETAR model allows one to
have different variances of the residuals in each regime. Note that this family of
models could be easily extended to SETARMA models, where the stochastic
process is modelled with an ARMA model in each regime, or to open-loop
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TAR models, for which explanatory variables can be used for both describing
the regime-switching and the models in each regime. Here, we only consider
the SETAR model in its simplest form.

The parameters of the SETAR model are estimated with the Minimum Mean
Square Error (MMSE) estimation method. It is assumed that the number of
regimes and the order of each AR part are already known. Let us first write
the parameter set Θe for the SETAR model as

Θe = (θ, r, σ)⊤ (6)

with

θ =(θ
(1)
0 , . . . , θ(1)

p1
, . . . , θ

(R)
0 , . . . , θ(R)

pR
)⊤ (7)

r=(r1, r2, . . . , rR−1)
⊤ (8)

σ =(σ1, σ2, . . . , σR)⊤ (9)

that is, as the collection of the AR model coefficients, the vector of threshold
values, and the vector of standard deviations of the noise sequence in each
regime, respectively.

Then, the objective function to be minimized is

S(Θe) =
T
∑

t=pmax+1

(yt − ŷt|t−1)
2 (10)

where pmax = max(p1, p2, . . . , pR) is the maximum order of all the AR parts.
Also, ŷt|t−1 denotes the one-step ahead prediction, which can be readily ob-
tained as the conditional expectation of yt given Ωt−1 and the set of parameters
Θe. This writes

ŷt|t−1 = E(yt|Ωt−1, Θe) = θ
(mt)
0 +

pmt
∑

i=1

θ
(mt)
i yt−i (11)

with the regime mt at time t determined according to Eq. (5). The optimal
parameter set Θ̂e is finally given by

Θ̂e = arg min
Θe

S(Θe) (12)

The above minimization problem can actually reduce to a linear least square
problem for the estimation of the parameters of the AR models given the
threshold values, by concentrating the sum of squares. In this case, the Weighted
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Least-Squares (WLS) estimate θ̂ of the AR parameters can be calculated as

θ̂(r) =





T
∑

t=1+pmax

xtx
⊤
t





−1



T
∑

t=1+pmax

xtyt



 =
(

x̃⊤x̃
)−1

x̃y (13)

where x̃ is a matrix for which every row contains past values of yt for each
regime multiplied with 0 or 1 depending on the regime sequence. For instance,
if the process is in regime R at time t, the tth row of x̃ is built as

xt
⊤ = xt|mt=R

⊤ = (0, . . . , 0, 1, yt−1, . . . , yt−pR
) (14)

From this WLS formulation of the AR parameter estimation, the objective
function formulated in Eq. (10) can now simplify to a function of the thresholds
only

S(r) =
T
∑

t=pmax+1

(yt − θ̂(r)⊤xt)
2 (15)

The optimal threshold values are then found as

r̂ = arg min
r

S(r) (16)

and the corresponding AR parameter estimates θ̂(r) (in a MMSE sense) are
finally computed with Eq. (13).

Since the objective function S(r) might prove to have a lot of local minima, the
initialization of the optimization process is crucial. Here, it has been initialized
with different starting points spread over the set of possible r, which have been
chosen after inspecting the data.

2.3 The STAR model

Often, abrupt changes between regimes are not satisfactory for modelling
stochastic processes, even though separate regimes have been clearly identified.
For that reason, Smooth Transition AutoRegressive (STAR) models have been
introduced in the literature, in order to feature smooth (and controllable) tran-
sitions between regimes (Chan and Tong , 1986; Teräsvirta and Anderson ,
1992). The Smooth Transition Bilinear (STBL) model, which belongs to the
family of STAR models, has already been successfully applied for describ-
ing wind speed variations (Madsen , 1996). For one-step ahead forecasting of
half-hourly averaged data, Madsen (1996) has described its performance as
slightly better than that of a simple AR(1) model. Here, we turn our attention
to the multiple-regime STAR (that we will, for convenience, refer to as STAR
only), for which the value of the considered stochastic process {yt} at time
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t is given as a weighted average of several AR parts. Since we consider an
univariate time-series, the weights assigned to the AR parts are a function of
lagged values of {yt}. For a number of regimes R, with an AR model of order
pk in the kth regime, the STAR(R; p1, p2, . . . , pR) is given by

yt =
R−1
∑

k=1

(

(

θ
(k)
0 +

pk
∑

i=1

θ
(k)
i yt−i

)

G̃k(zt)

+



θ
(k+1)
0 +

pk+1
∑

j=1

θ
(k+1)
j yt−j



Gk(zt)
)

+ εt (17)

with
G̃k(zt) = 1 − Gk(zt) (18)

where {εt} is a Gaussian white noise process with variance σε
2, εt ∼ N (0, σε

2),
and Gk is a smooth function that controls the transition between the kth and
(k + 1)th regimes. Gk(z) takes values in the unit interval. The regime variable
zt can be defined as a lagged value yt−d of the stochastic process (d is then
the lag parameter), or alternatively as an average of a set of lagged values.

The choice of the transition function depends on which type of behaviour is to
be modelled. The two most popular transition functions are the exponential
and logistic ones. The latter is a smooth increasing function, while the former
is a smooth symmetric function around c. The latter is chosen here, since it
permits to more clearly separate the different regimes. The logistic function is
a 2-parameter function defined as

G(z) = (1 + exp (−γ(z − c)))−1
, γ > 0 (19)

where γ is the slope parameter, which controls the transition speed between
the regimes, and c is the midpoint between the two regimes. Note that a STAR
model with a logistic transition is equivalent to the SETAR model introduced
above when γ → ∞ with zt = yt−d. Inversely, when γ → 0 (which is equivalent
to G(zt) → 0.5, ∀zt), it reduces to a simple linear AR model, since the AR
parts of each regime are equally weighted.

In the multiple regime case, one uses a pair of parameters (γk, ck) for defining
the transition function Gk between the kth and (k+1)th regimes, k = 1, . . . , R−
1

Gk(z) = (1 + exp (−γk(z − ck)))
−1

, γk > 0 (20)

The estimation method of the AR parameters for the STAR model is pretty
similar to that described above for the case of SETAR models. Write

Θs = (θ,Γ, c, σε)
⊤ (21)

with

8



Γ = (γ1, γ2, . . . , γR−1)
⊤ (22)

c=(c1, c2, . . . , cR−1)
⊤ (23)

which are the parameters of the transition functions, σε
2 the variance of the

white noise process, and with θ the parameters of the AR models in each
regime, as given by Eq. (7) for SETAR models. Indeed, the MMSE estimate
of Θs is obtained by minimizing an objective function that is equivalent to
that of Eq. (10), which has been introduced for the case of SETAR models

S(Θs) =
T
∑

t=pmax+1

(yt − ŷt|t−1)
2 (24)

where pmax is still the maximum order of the AR models, and the one-step
ahead prediction ŷt|t−1 is this time calculated with

ŷt|t−1 =
R−1
∑

k=1





(

θ
(k)
0 +

pk
∑

i=1

θ
(k)
i yt−i

)

G̃k(zt) +



θ
(k+1)
0 +

pk+1
∑

j=1

θ
(k+1)
j yt−j



Gk(zt)





(25)

Then, assuming that R and the order of the AR part in each regime, as well
as Γ and c are known, the MMSE estimate of θ can be readily obtained from
a WLS formulation

θ̂(Γ, c) =
(

x̃⊤x̃
)−1

x̃y (26)

where x̃ is the weighted regression matrix, for which every row contains for
each regime lagged values of {yt}, weighted by the value of the transition
function at the given time step. For instance, if considering a STAR(2; 1, 1)
model, with γ and c the parameters of the logistic transition function G, the
tth row of x̃ is given by

xt
⊤ = xt(γ, c)⊤ =

(

G̃(zt), yt−1G̃(zt), G(zt), yt−1G(zt)
)

(27)

From this WLS formulation, the MMSE estimate of Θs is obtained by mini-
mizing a reduced form of the objective function defined by Eq. (24)

Θ̂s = arg min
(Γ,c)

S(Γ, c) = arg min
(Γ,c)

T
∑

t=1

(yt − θ̂(Γ, c)⊤xt)
2 (28)

with an appropriate nonlinear optimizer. θ̂ is consequently calculated with
Eq. (26). Like for the case of SETAR models, the optimization process may
be sensitive to the choice of initial values for Γ and c, and may thus reach
local optima. This optimization process is therefore initialized with a set of
threshold values spread over the set of possible values, chosen after inspection
of the data. In parallel, the initial Γ is chosen to be a unit vector.
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The models described in the present Section, i.e. linear ARMA models, SETAR
and STAR regime-switching models, as well as related estimation methods,
will be employed in Section 4 for the modelling and forecasting of offshore
wind power fluctuations.

3 A regime-switching model governed by a hidden Markov chain

The models presented in Section 2 rely on an observable process for determin-
ing the actual regime. When considering univariate time-series (like time-series
of measured wind power output), the regime is thus compulsorily determined
as a function of past values of the process. Markov Switching AutoRegressive
(MSAR) models propose an alternative to this observable regime-switching
modelling, by allowing the switches to be governed by an unobservable process.
This unobservable process is assumed to be a Markov chain. A nice feature of
this approach is that it permits to reflect the impact of some external factors
on the evolution of the time-series (Hamilton , 1989). Indeed, this class of
models has been found particularly suitable for modelling the temporal evolu-
tion of weather variables, such as daily rainfall occurrences (Robertson et al ,
2003) or wind fields (Ailliot and Monbet , 2006; Ailliot et al , 2006) especially
because it manages to capture the influence of some complex meteorological
features e.g. related to the motion of large meteorological structures. For the
specific case of the fluctuations of offshore wind generation, our aim is to use
this hidden Markov chain for describing meteorological features governing the
regimes that cannot be determined from past values of measured power pro-
duction only. MSAR models are described in a first part of the section, the
issue of estimation for this class of models is consequently addressed, and a
brief last paragraph deals with the use of MSAR models for forecasting.

3.1 Description of MSAR models

MSAR models resemble SETAR models in their formulation. If considering R

regimes and AR models of orders p1, p2, . . . , pR for each of these regimes, the
corresponding MSAR(R; p1, . . . , pR) model is indeed given by

yt = θ
(st)
0 +

pst
∑

i=1

θ
(st)
i yt−i + σst

εt (29)

where {εt} is a Gaussian white noise process with unit variance, εt ∼ N (0, 1),
σk

2 the variance of the noise sequence in the kth regime, and {st} the regime
sequence. But then, MSAR and SETAR models differ in the way the regime
sequence is modelled. While this sequence was directly given as a function of
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measured power values for SETAR models (cf. Eq. (5)), it is now unobservable.
Though, it is assumed that {st} follows a first order Markov chain on the finite
space {1, . . . , R}: the regime at time t is determined from the regime at time
t − 1 only, in a probabilistic way

P (st = j|st−1 = i, st−2, . . . , s0) = P (st = j|st−1 = i), ∀i, j, t (30)

All the probabilities governing the switches from one regime to the other are
gathered in the so-called transition matrix,

P =





















p11 p12 · · · p1R

p21 p22 · · · p2R

...
...

. . .
...

pR1 pR2 · · · pRR





















. (31)

for which the element pij represents the probability of being in regime j given
that the previous regime was i, as formulated in Eq. (30). Some constraints
need to be imposed on the transition probabilities. Firstly, by definition all
the elements on a given row of the transition matrix must sum to 1,

R
∑

j=1

pij = 1, ∀i (32)

since the R regimes represent all the possible regimes that can be reached
at any time. And secondly, all the elements of the matrix are chosen to be
positive: pij ≥ 0, ∀i, j, in order to ensure ergodicity, which means that any
regime can be reached eventually.

The set Θm of model parameters for MSAR models,

Θm = (θ(1), . . . , θ(R), σ,P)⊤ (33)

gathers the parameters of the AR parts in each regime,

θ(j) = (θ
(j)
0 , θ

(j)
1 , . . . , θ(j)

pj
)⊤, k = 1, . . . , R (34)

the standard deviation of the noise sequence in all regimes,

σ⊤ = (σ1, σ2, . . . , σR)⊤ (35)

as well as the transition matrix P.

For illustrating the properties and some characteristics of the model estimation
procedure, we simulate in this section a MSAR(2; 1, 1) model. The transition
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matrix P is such that

P =







0.95 0.05

0.05 0.95





 , (36)

and the other model parameters (i.e. AR coefficients and variance in each
regime) are

(θ(1)⊤, θ(2)⊤)= (1, .9, 5, .8) (37)

σ⊤ = (0.8, 1.4) (38)

The evolution of this MSAR process over a period of T = 500 time-steps is
depicted in Fig. 2. The top part of the Figure shows the simulated process
{yt}, while the bottom part is related to the evolution of the regime sequence
{st}. Owing to the choice of transition probabilities the switches between the
two regimes are pretty rare.

Here is Figure 2

3.2 Estimation

Estimating the parameters of MSAR models is more complicated than for
the case of the regime-switching models introduced in the above sections, due
to the unobservable regime sequence {st}. The method described in the fol-
lowing is based on maximum likelihood estimation. More precisely, we apply
the Expectation Maximization (EM) algorithm, which consists in an iterative
method for maximizing the likelihood (Dempster et al , 1977). This two-step
algorithm includes first an expectation step, for which the optimal inference
of the regime sequence is determined, and a maximization step, where the
parameters of the AR parts are updated by using the likelihood. A first para-
graph is devoted to the optimal inference issue, while the EM algorithm is
presented in a second one.

3.2.1 Optimal Inference of Regimes

A necessary assumption for determining the optimal inference of the regime
sequence is that the number of regimes R, the order of the AR parts, as well
as the set of parameters Θm are known. Even in this case, it is not possible to
readily say in which regime the process belongs to for each observation. The
solution to that problem is to consider a filtered probabilistic inference of the
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hidden regime sequence given the data (Hamilton , 1989). Define the filtered

probability ξ
(j)
t|t as the conditional probability of st being in regime j, given

the information set Ωt at time t and Θm, i.e.

ξ̂
(j)
t|t = P (st = j|Ωt, Θm) (39)

Straightforwardly, the filtered probabilities for every regime can be arranged
in a vector of filtered probabilities, ξ̂t|t, as

ξ̂t|t =
(

ξ̂
(1)
t|t , ξ̂

(2)
t|t , . . . , ξ̂

(R)
t|t

)⊤
(40)

The filtered probabilistic inference allows one to iteratively calculate ξ̂t|t start-

ing from t = 1, by drawing a simple relation between ξ̂t|t and ξ̂t−1|t−1 given
the observations up to time t − 1 and the model parameters

ξ̂t|t = gf(ξ̂t−1|t−1, Ωt−1, Θm) (41)

For deriving the filtered probabilistic inference gf , we first use the definition
of conditional probabilities for reformulating Eq. (39)

ξ̂
(j)
t|t =

f(yt, st = j|Ωt−1, Θm)

f(yt|Ωt−1, Θm)
(42)

with the numerator being the conditional joint density of yt and st being in
state j, given Ωt−1 and Θm, while the denominator is the conditional density
of yt given Ωt−1 and Θm.

The numerator in the above equation can be computed by

f(yt, st = j|Ωt−1, Θm) = ξ̂
(j)
t|t−1f(yt|st = j, Ωt−1, Θm) (43)

where ξ̂
(j)
t|t−1 = P (st = j|Ωt−1, Θm) is the forecast of the probability of st being

in the regime j, given the information set Ωt−1 at time t − 1 and Θm. In
parallel, the conditional density of yt, given that st is in regime j at time t,
and given Ωt−1 and Θm, is readily given by

f(yt|st = j, Ωt−1, Θm) =
1√

2πσj

exp

(

−(yt − xt,j
⊤θ(j))2

2σj
2

)

(44)

with xt,j
⊤ = (1, yt−1, . . . , yt−pj

), and by using a Gaussian assumption on the
distribution of the noise sequence in each regime, εt|st ∼ N (0, σst

2). Also,
it is assumed that the conditional density of yt only depends on the current
regime. It could be possible to consider a potential dependency with previous
regimes, but this issue is not addressed here.
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The denominator in Eq. (42) is the conditional density of the observation yt,
given the past observations up to time t − 1. This function can be calculated
as the sum of the conditional joint density functions for all regimes

f(yt|Ωt−1, Θm) =
R
∑

j=1

f(yt, st = j|Ωt−1, Θm) (45)

where the conditional joint density function f(yt, st = j|Ωt−1, Θ) is given by
Eq. (43).

In order to use a matrix notation for describing the function gf , let us define
ηt as the vector which gathers at time t the conditional densities of yt, given
that the regime sequence is in such or such regime

ηt =
(

f(yt|st = 1, Ωt−1, Θm), . . . , f(yt|st = R, Ωt−1, Θm)
)⊤

(46)

and for which each element is simply given by (44). Then for every time-step
t, following the previous developments, the vector of filtered probabilities ξ̂t|t

can be computed by

ξ̂t|t =
ξ̂t|t−1 ⊙ ηt

1R
⊤(ξ̂t|t−1 ⊙ ηt)

(47)

where ⊙ denotes the element-wise multiplication, 1R is a vector of ones of
dimension R, and where ξ̂t|t−1 is given by

ξ̂t|t−1 = P⊤ξ̂t−1|t−1 (48)

Finally, the filtered probabilistic inference gf can be defined as

gf : (ξ̂t−1|t−1, Ωt−1, Θm) → ξ̂t|t =
(P⊤ξ̂t−1|t−1) ⊙ ηt

1R
⊤((P⊤ξ̂t−1|t−1) ⊙ ηt)

(49)

Eqs. (47) and (48) are often referred to as the Hamilton filter, and can be used
in an iterative manner in order the calculate the vector of filtered probabilities
for all observations. Note that an interesting feature of this filtered probabilis-
tic inference is that the conditional log-likelihood of Θm given the data can be
obtained as a by-product of the method. ℓ(Θm|ΩT ) is indeed given by

ℓ(Θm|ΩT ) =
T
∑

t=1

log (f(yt|Ωt−1, Θm)) =
T
∑

t=1

log
(

1R
⊤(ξ̂t|t−1 ⊙ ηt)

)

(50)

As an illustration of the method, the sequence of filtered probabilities {ξ̂t|t}
from the data shown in Fig. 2, and thus related to the MSAR(2; 1, 1) intro-
duced in Section 3.1, is depicted in Fig. 3 (top part). The bottom part shows
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the sequence having the highest probability, which is very similar to the true
regime sequence shown in the bottom part of Fig. 2.

Here is Figure 3

3.2.2 Estimation of the model parameters with the EM algorithm

As briefly explained in the introductive part of the present Section, the EM
algorithm is an iterative method that permits for MSAR models to estimate
the transition matrix, the parameters of the AR parts and the variance in each
regime, with the aim of maximizing the conditional log-likelihood ℓ(Θm|ΩT )
of the model parameters. The first step of the algorithm i.e. the expectation
step, relates to the inference of the regime. For that purpose, we use the
Hamilton filter introduced in the above paragraph. The second part, i.e. the
maximization step, consists in the application of a set of update equations for
the subsets of models parameters θ(j), σ, and P. The maximization of the
likelihood is carried by successively applying expectation and maximization
steps. Even though one notes that the conditional log-likelihood is not directly
used in the method, it can be shown that the EM algorithm asymptotically
maximizes that likelihood (Bishop , 1995). In addition, the evolution of its
value can be monitored since it can be computed at each expectation step.

As a first stage of the maximization step, one needs to calculate the sequence
of smoothed probabilities related to the regime sequence. The smoothed prob-
ability ξ̂

(j)
t|T is defined as the conditional probability of being in regime j at

time t given the whole dataset ΩT and the model parameters Θm

ξ̂
(j)
t|T = P (st = j|ΩT , Θm) (51)

For computing ξ̂
(j)
t|T , one uses the smoothed probabilistic inference gs, which is

defined as

gs : (ξ̂t|t, ξ̂t+1|T , ΩT , Θm) → ξ̂t|T = ξ̂t|t ⊙
(

P
(

ξ̂t+1|T ⊘ P⊤ξ̂t|t

))

(52)

with ⊙ and ⊘ the element-wise multiplication and division, respectively. The
smoothed probabilistic inference is derived in a similar fashion than the filtered
probabilistic inference introduced in the above paragraph (Hamilton , 1994).
Eq. (52) is used recursively, in order to obtain the smoothed probability at
time t.

In a second stage, each element pij of the transition matrix P can be esti-
mated by visiting the sequence of smoothed probabilities and by applying the
following equation
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p̂ij =

∑T
t=pmax+1 P (st = j, st−1 = i|ΩT , Θm)
∑T

t=pmax+1 P (st−1 = i|ΩT , Θm)
(53)

=





T
∑

t=pmax+1

ξ̂
(i)
t−1|T





−1
T
∑

t=pmax+1

ξ̂
(j)
t|T ξ̂

(i)
t−1|T (54)

where pmax is the maximum order of the AR models.

Consequently, the parameters θ(j) of the AR part related to regime j can be
re-estimated by using a WLS formulation. It is indeed possible since the prob-
abilities of being in such or such regime at any time t are known. They are
given by the sequence of smoothed probabilities {ξ̂t|T}. In the WLS formu-
lation, each observation is weighted by the smoothed probability of being in
that regime.

For that purpose, arrange the smoothed probabilities related to regime j in
a weight matrix Σj (of dimension T × T ), for which the tth element on the
diagonal corresponds to the smoothed probability of regime j at time t, that
is,

Σj =















ξ̂
(j)
1|T 0

. . .

0 ξ̂
(j)
T |T















(55)

Then, for each regime j, an estimate of the AR parameters θ(j) can be com-
puted by solving the usual equation for WLS estimation

θ̂
(j)

= (x̃⊤
j Σjx̃j)

−1x̃⊤
j Σjyj (56)

where

x̃j =















x1,j
⊤

...

xT,j
⊤















=















1 ypj
· · · y1

...
...

...
...

1 yT−1 · · · yT−pj















, and yj =















ypj+1

...

yT















(57)

Finally, updating the variance σj
2 in regime j can be readily done with

σ̂j
2 =

1

T − (2 + pmax)





T
∑

t=1+pmax

ξ̂
(j)
t|T





−1
T
∑

t=1+pmax

(

yt − xt,j
⊤θ̂(j)

)2
ξ̂

(j)
t|T (58)

that is, by summing over t the squared residuals of the AR model related to
regime j, weighted by the smoothed probability of being in regime j at time
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t, and normalized by the sum over t of the smoothed probabilities for this
regime.

In order to initiate the EM algorithm, one has to choose an initial value of
ξ̂1|0. Two main approaches can be used: (i) one can set each element of ξ̂1|0

to equal probability, i.e. ξ̂
(j)
1|0 = R−1, ∀j; (ii) the initial value estimation can be

included in the likelihood maximization problem solved with the EM algorithm
(Hamilton , 1994). For the sake of simplicity, the first approach is chosen. In
parallel, the initial transition probabilities gathered in P, as well as the initial
variances and AR parameters, are derived after inspection of the dataset.

3.3 Forecasting with MSAR

At time t−1, producing a one-step ahead forecast with MSAR models consists
in determining the conditional expectation of yt given the information set Ωt−1

and the model parameters Θm. For that purpose, one needs first to predict
the probabilities to be in such or such regime at time t. This is done with

ξ̂t|t−1 = P̂⊤ξ̂t−1|t−1 (59)

where P̂ is the transition matrix estimated over the training set with the EM
algorithm described above, and ξ̂t−1|t−1 gathers the probabilities of being in
such or such regime at time t−1 (cf. definition (47)). Then, the one-step ahead
prediction for the stochastic process itself is calculated as

ŷt|t−1 = E(yt|Ωt−1, Θ̂m) = Â⊤
t ξ̂t|t−1 =

(

xt,1
⊤θ̂(1), . . . ,xt,R

⊤θ̂(R)
)⊤

ξ̂t|t−1 (60)

where Ât is the vector of the forecasts of each of the AR parts related to the
R regimes. The one-step ahead forecast thus consists in a weighted sum of the
AR forecasts for every regime, the weights being given by the probability of
being in these regimes.

4 Results from offshore case studies

In order to analyse and compare the performance of the various linear and
regime-switching models presented above, we use them for describing the fluc-
tuations of offshore wind generation on two real-world case studies. The ex-
ercise consists in one-step ahead forecasting of time-series of wind power pro-
duction. The data for these two offshore wind farms are described in a first
paragraph. Then, the configuration of the various models and the setup used
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for estimation purposes are presented. Finally, a collection of results is shown
and commented.

4.1 Case studies

The two offshore wind farms are Horns Rev and Nysted, located in Denmark,
off the west coast of Jutland and off the south cost of Zealand, respectively.
The former has a nominal power of 160 MW, while that of the latter reaches
165.5 MW. The annual energy yield for each of these wind farms is around
600GWh. Today, they represent the two largest offshore wind farms worldwide.

For both wind farms, the power data consist in one-second measurements for
each wind turbine. Focus is given to the total power output at Horns Rev and
Nysted. Following Sørensen et al (2007, 2008), it has been chosen to model
each wind farm as a single wind turbine, the production of which consists in
the average of the power generated by all the available wind turbines. These
turbines are of nominal capacity 2000 kW and 2300 kW for Horns Rev and
Nysted, respectively. Then, a sampling procedure has been developed in order
to obtain time-series of 1, 5, and 10-minute power averages. These sampling
rates are selected so that the very fast fluctuations related to the turbulent
nature of the wind disappear and reveal slower fluctuations at the minute
scale. Because there may be some erroneous or suspicious data in the raw
measurements, the sampling procedure has a threshold parameter τv, which
corresponds to the minimum percentage of data that need to be considered as
valid in a given time interval, so that the related power average is considered
as valid too. Whatever the sampling rate, the chosen threshold is τv = 75%.
At Horns Rev, the available raw data are from 16th February 2005 to 25th

January 2006. And, for Nysted, these data have been gathered for the period
ranging from 1st January to 30th September 2005.

From the averaged data, i.e. the three time-series of wind power production
averaged at different rates and for the two offshore wind farms, it is necessary
to define periods that are used for training the statistical models and periods
that are used for evaluating what the performance of these models may be in
operational conditions. These two types of datasets are referred to as learning
and testing sets. We do not want these datasets to have any data considered as
not valid. Sufficiently long periods without any invalid data are then identified
and permit to define the necessary datasets. For Horns Rev, the training set
relates to September 2005. The testing set is composed by 19 periods whose
lengths are between 2 and 16 days, identified in the remaining of the whole
dataset. Regarding Nysted, the training set corresponds to the period from
the 15th February 2005 to the 9th March 2005, while the test set gathers 14
periods of length 6-27 days from the rest of the available data.
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4.2 Models, estimation setup and evaluation criteria

The various time-series of wind power production are modelled with the linear
ARMA and regime-switching SETAR, STAR and MSAR models presented in
Sections 2 and 3. The order of the AR and MA parts of ARMA models are
chosen to vary between 1 and 5, thus leading to 25 competing ARMA models.

For the case of SETAR and STAR models, expert knowledge indicates that
a number of 3 regimes should be defined. Indeed, this choice for 3 regimes is
motivated by the influence of the turbine characteristic curve on the variance
of wind generation: this variance is smaller in the low and high power range,
while it is much larger in the steep slope part of the power curve (Lange ,
2005; Pinson , 2006). Consequently, regimes are defined by 2 thresholds. Their
optimal values are determined from the nonlinear optimization procedures
described in paragraphs 2.2 and 2.3. The lag parameter d is chosen to be
1. Thresholds are initialized by considering various combinations of lower and
higher threshold values. The lower ones are picked in the set {200, 500, 800} for
both wind farms, while the higher ones are picked in the sets {1300, 1600, 1900}
and {1500, 1800, 2100} for Horns Rev and Nysted, respectively. This yields 9
combinations of initial threshold values for each wind farm. For the particular
case of STAR models, the shape of the logistic functions is fixed by setting the
slope parameter γ to 1. In parallel, the order of the AR parts in each regime is
chosen to vary between 1 and 5. This finally results in 1125 competing models
in each of the SETAR and STAR model families.

The AR parts in each regime of MSAR models also have orders varying from
1 to 5. In order to compare with SETAR and STAR models, the same number
of 3 regimes is defined. Note then that the forecast accuracy of MSAR models
presented and discussed below may not be optimal, as it may improve by
defining more (or maybe less) regimes. The initialization of the EM algorithm
used for parameter estimation consists of picking an initial transition matrix P,
as well as initial AR parts, by specifying their parameters and their variances,
such that the resulting MSAR model is stationary. A stationary MSAR model
is defined as a MSAR model whose AR part in each regime is stationary
(cf. the definition of a stationary AR model given in (Chatfield , 2004)). The
approach chosen here is to impose the transition matrix and the variances of
the AR parts, while having the set of AR parameters varying. The initial P

and σ are

P =















0.8 0.1 0.1

0.1 0.8 0.1

0.1 0.1 0.8















, and σ =















40

40

40















The initial parameters of the AR parts take point of departure in the simple
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three regime MSAR(3; 1, 1, 1) model with

(

θ(1)⊤, θ(2)⊤, θ(3)⊤
)

= (1, 0.7, 50, 0.9, 100, 0.9)

Then, when increasing the order of one of the AR part, the new AR parameter
to be initialized is given by a randomly chosen real number. The stationarity of
the resulting MSAR model is verified. If this model is not stationary, another
random number is drawn. This procedure is repeated until a stationary MSAR
model is obtained. For each order of the MSAR model, we consider 10 different
initial parameter sets yielding a stationary model. This raises the number of
competing MSAR models to 1250.

Either with the ML estimation method and a Gaussian assumption on the
residual distributions, or with the MMSE estimation method, the parameters
of the models are determined with the aim of minimizing a quadratic error
criterion. Therefore, in order to be consistent with the way parameters are
estimated, models are also evaluated with a quadratic criterion on the test-
ing set. More precisely, from the large panel of error measures available for
evaluating wind power predictions (see (Madsen et al , 2005) for discussion
on these error measures), the Root Mean Square Error (RMSE) criterion is
chosen.

4.3 Results and discussion

In a first stage, Table 1 lists the best models of each class — best in terms
of a minimum RMSE on the testing set — for the time-series related to the
Nysted wind farm. For instance for the 1-minute averaged data, the best of
the 25 competing ARMA models has been found to be the ARMA(5, 4). In
addition, models are ranked from minimum to maximum RMSE.

This Table also gives the characteristics of the optimal SETAR and STAR
models, that is, the thresholds that were determined from the optimization
procedure. Note that for the 5 and 10-minute averaged data, the thresholds
related to the lower regime for the SETAR models are very low (equal to 2.2
and 6 kW, respectively), thus isolating the no-production cases as a regime
itself.

Here is Table I

Whatever the sampling rate, the ARMA, SETAR and STAR models have a
similar level of performance, while the RMSE for the MSAR models is much
lower. The improvement obtained with the Markov-switching models with
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respect to the three other types of models ranges from 19% to 32% with
respect to the other models, depending on the sampling rate. Then, it seems
that STAR models have an advantage versus the two others since it is ranked
second in all cases, even though the reduction in RMSE may not be highly
significant. The performance of the SETAR and ARMA models are a lot alike.
It appears that considering separate regimes does not give any improvement
against the classical linear models unless the switches between regimes are
smoothed and controlled by some transition function. And, the hypothesis of
some succession of regimes that could be captured with a first order Markov
chain is validated by these results.

The testing set for Nysted is composed by 14 periods of different lengths and
with different characteristics. These characteristics, i.e. various mean produc-
tion levels and standard deviation of the wind power output are summarized
in Fig. 4, for the time-series with a temporal resolution of 5 minutes. Mean
production and standard deviation values are very similar for the other 2 av-
eraging rates. In parallel, the detail of the performance of the various models
is given in Fig. 5, which depicts the RMSE of the models listed in the above
Table for each period. In this Figure, there are only few periods for which the
level of performance of the MSAR is worse than that of the other models. In
general, the performance of all models is stable from one period to the other,
and it does not seem that certain type of conditions would advantage such
or such type of model. Also, by noticing that the curves for ARMA, SETAR
and STAR models lie on top of each other whatever the period, one under-
stands that modelling the regime-switching with a lagged value of measured
wind power output does not yield a more dynamic modelling of the power
fluctuations.

Here is Figure 4

Here is Figure 5

In a second stage, the same type of exercise is carried out for the Horns Rev
case study. Table 2 gives the sorted list of the best models of each category
for the three sampling rates, as well as their characteristics. One sees that the
thresholds of the SETAR model for the 5-minute averaged data, and those of
the STAR model for the 10-minute sample data, are very close, showing that
we almost converged towards two-regime models. The number of regimes has
been imposed here, based on the knowledge of the effects of the non-linear
and bounded conversion process on power fluctuations. However, the number
of regimes could also be considered as a model parameter to be optimized in
the future, in order to see its influence on the resulting model performance.
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Here is Table II

Again, the STAR models have a slight advantage against the SETAR mod-
els, and these latter ones are also slightly better than linear ARMA models.
But, they are significantly outperformed by the MSAR models, whatever the
sampling rate. Indeed, the improvement proposed by this class of models with
respect to the others ranges between 20 and 32%. This confirms once again
the interest of considering a hidden Markov chain for modelling the regime-
switching. In parallel, note that both for the Nysted and Horns Rev test cases,
the average level of RMSE increases as the temporal resolution of time-series
increases from 1 to 10 minutes. The persistent nature of wind generation makes
that variations in actual wind power output can be more easily modelled and
predicted from recent power measures when the lead time is shorter. In ad-
dition, the average level of RMSE is significantly larger for Horns Rev than
for Nysted, and this whatever the sampling rate. Since the estimated models
are globally unbiased, this reveals that the variance of the model residuals is
higher for the former wind farm, and hence that the random part of the fluc-
tuations have a larger magnitude. This is certainly due to a more turbulent
wind at Horns Rev.

While the characteristics of the 19 periods composing the evaluation set at
Horns Rev are gathered in Fig. 6 (in terms of mean and standard deviation
of the wind power production for time-series with a 5-minute temporal reso-
lution), the performance of the various models listed in Table 2 are detailed
in Fig. 7. As it was the case above for Nysted, mean production and stan-
dard deviation values over the various evaluation periods are very similar for
the other 2 averaging rates. From Fig. 7 it appears that forecast performance
is more variable at Horns Rev. However, MSAR models are still significantly
better than the other models for almost all periods, except for periods number
15 and 17. A particularity of these two periods is that they consist in fast suc-
cessions of drops and increases of wind power output. One may think that in
these specific periods the SETAR and STAR models may be more appropriate
since they have different AR parts depending on the level of power output,
while it is not the case for MSAR and ARMA models. Though, since SETAR
and STAR models do not exhibit a more significant improvement with respect
to ARMA models for these two periods, this reveals that the regime-switching
based on lagged values of power output does not have a higher value in these
situations. Therefore, the poorer performance of MSAR models over periods
15 and 17 may simply be explained by the fact that the probabilistic inference
of the regime-sequence was not very representative over these periods, owing
to some more seldom meteorological phenomena.

Here is Figure 6
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Here is Figure 7

5 Concluding remarks

Particular attention has to be given to the modelling of the fluctuations of
offshore wind generation, since dedicated models are needed for enhancing the
existing control and energy management strategies at offshore wind parks. This
issue has been addressed in the present paper, by applying some statistical
regime-switching models. The choice for regime-switching approaches has been
motivated by the succession of periods with fluctuations of lower and larger
magnitudes that can be easily noticed when inspecting time-series of offshore
wind power production averaged at a minute rate.

Two different types of regime-switching models have been applied. On the one
hand, SETAR and STAR models rely on explicit rules for determining what
the current regime is. It is in practice given by some function of past values
of measured power. On the other hand, MSAR models are based on the idea
that the regime-switching is governed by a hidden Markov process. This, from
a theoretical point of view, may allow one to capture some complex influence
of meteorological conditions on the wind power fluctuations. For verifying this
a priori nice feature of MSAR models, they have been compared to SETAR,
STAR and ARMA models on a one-step ahead forecasting exercise, with the
aim of minimizing a quadratic error criterion. The time-series considered have
been time-series of wind power averaged at a 1, 5, and 10-minute rate for the
Nysted and Horns Rev offshore wind farm in Denmark. In all cases, it has
been found that MSAR models significantly outperform the other ones: the
error reduction ranges between 19 and 32% depending on the test case and
the sampling rate. The gain of applying SETAR or STAR models instead of
simple linear ARMA models does exist, but is not really significant. In con-
trast, MSAR models indeed manage to capture the influence of some complex
meteorological features on the power fluctuations. This hence demonstrates
the complexity of the regime sequence governing successive periods with dif-
ferent behaviours of wind power fluctutions, which cannot be considered as a
simple function of the level of wind generation only. It will be of particular
interest to study the relation between the temporal evolution of some mete-
orological variables and the regime sequences of MSAR models in order to
determine which of these variables have a direct impact on the magnitude of
power fluctuations. Integrating this knowledge in existing forecasting meth-
ods will permit to significantly increase their skill for the specific case of very
short-term prediction (from some minutes to few hours) at offshore sites.

The results for the two offshore wind farms encourage further investigation
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on the use of Markov-switching approaches to the modelling of time-series of
offshore wind generation at the minute scale. First, we have used an AR model
in each regime, for which the variance of the residuals is fixed and the param-
eters unconditional. Though, we could allow this variance to vary by using
some kind of Generalized AutoRegressive with Conditional Heteroskedastic-
ity (GARCH) models in each regime. Alternatively, we may propose to use
AR models whose parameters are conditional to the level of the predictand.
In such a case, the Gaussian assumption must be rethought, as it is known
that conditional distributions of wind generation given the level of power out-
put are not Gaussian (Pinson , 2006). If a parametric assumption is to be
made, a β-distribution assumption is much more suitable. The development
and application of conditional β-MSAR models will be the focus of further
research works. Finally, wind generation is a non-stationary process, and it
would hence be appropriate to enhance the proposed models in order for them
to have time-varying parameters.

Broader perspectives regarding follow-up studies include the development of
stochastic models for simulating the interaction of offshore wind generation
with conventional generation or storage, used as a backup for smoothing the
fast power fluctuations at offshore wind farms. Better control strategies will
result from the application of these models, which will significantly reduce the
potential large costs induced by unwanted large power fluctuations.
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Figure 1. Wind power generated at Horns Rev over a 11-day episode in July 2005.
Power values consist in 10-minute averages, normalized by the nominal power Pn

of the wind farm (160 MW).
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Figure 2. Simulation of a MSAR(2;1,1) process over a period of 500 time-steps.
The transition matrix is given by Eq. (36), and the AR coefficients and variance in
each regime by equations (37) and (38), respectively. Top: simulated process {yt}.
Bottom: regime sequence {st}.
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Figure 3. Inference of the regime sequence. The model considered is the
MSAR(2; 1, 1) introduced in the above paragraph. Top: The estimated regime se-
quence {ξ̂t|t} (solid line: filtered probability of being in regime 1; dash-dot line:
filtered probability of being in regime 2). Bottom: the regime sequence of highest
probability.
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Figure 4. Characteristics of the various evaluation periods at Nysted, in terms of
mean production level and standard deviation of the wind power output (both
normalized by the nominal power Pn of the wind farm (165 MW)).
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Figure 5. The RMSE on all test data sets from Nysted for each model. Top: 1
minute. Middle: 5 minute. Bottom: 10 minute.
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Figure 6. Characteristics of the various evaluation periods at Horns Rev, in terms
of mean production level and standard deviation of the wind power output (both
normalized by the nominal power Pn of the wind farm (160 MW)).
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Figure 7. The RMSE on all test data sets from Horns Rev for each model. Top: 1
minute. Middle: 5 minute. Bottom: 10 minute.
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Table 1
Performance evaluation of the various linear and regime-switching models for
Nysted, with the RMSE criterion, on the times-series averaged at different rates.
The left column gives the optimal model orders for each type of model. The optimal
threshold values for SETAR models (r) and STAR models (c) are also given. The
models are ranked as a function of their RMSE on the testing set.

(a) 1-minute averaged data

Model RMSE [kW] r [kW] c [kW]

MSAR(3; 4, 4, 3) 13.3 – –

STAR(3; 5, 5, 5) 16.1 – (920.9, 2096.6)

SETAR(3; 4, 4, 4) 16.5 (203.6, 2006.3) –

ARMA(5, 4) 16.5 – –

(b) 5-minute averaged data

Model RMSE [kW] r [kW] c [kW]

MSAR(3; 4, 5, 5) 35.5 – –

STAR(3; 5, 5, 5) 48.9 – (827.3, 1638.7)

ARMA(4, 5) 50.8 – –

SETAR(3; 1, 3, 3) 50.9 (2.2, 2149.8) –

(c) 10-minute averaged data

Model RMSE [kW] r [kW] c [kW]

MSAR(3; 2, 4, 4) 60.6 – –

STAR(3; 5, 5, 5) 86.2 – (579.4, 1545.4)

SETAR(3; 3, 5, 5) 88.6 (6.0, 1595.4) –

ARMA(5, 1) 88.9 – –
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Table 2
Performance evaluation of the various linear and regime-switching models for Horns
Rev, with the RMSE criterion, on the times-series averaged at different rates. The
left column gives the optimal model orders for each type of model. The optimal
threshold values for SETAR models (r) and STAR models (c) are also given. The
models are ranked as a function of their RMSE on the testing set.

(a) 1-minute averaged data

Model RMSE [kW] r [kW] c [kW]

MSAR(3; 3, 2, 5) 16.1 – –

STAR(3; 5, 5, 5) 20.1 – (505.5, 1824.2)

SETAR(3; 4, 4, 4) 20.4 (432.2, 1824.3) –

ARMA(2, 1) 20.6 – –

(b) 5-minute averaged data

Model RMSE [kW] r [kW] c [kW]

MSAR(3; 3, 1, 5) 45.0 – –

STAR(3; 5, 5, 5) 63.3 – (892.9, 1673.0)

SETAR(3; 3, 2, 3) 65.1 (744.4, 760.6) –

ARMA(2, 2) 65.3 – –

(c) 10-minute averaged data

Model RMSE [kW] r [kW] c [kW]

MSAR(3; 3, 2, 4) 68.1 – –

STAR(3; 5, 4, 5) 96.9 – (705.0, 779.9)

SETAR(3; 3, 3, 1) 99.8 (240.2, 2300) a –

ARMA(5, 2) 99.9 – –

a Here, the upper threshold for the optimal SETAR model has converged to the nominal power value,
indicating that this optimal model is indeed a SETAR(2;3,3) models.
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