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Predictions of wind power production for horizons up to 48–72 h ahead comprise a highly
valuable input to the methods for the daily management or trading of wind generation.
Today, users of wind power predictions are not only provided with point predictions, which
are estimates of the conditional expectation of the wind generation for each look-ahead
time, but also with uncertainty estimates given by probabilistic forecasts. In order to avoid
assumptions on the shape of predictive distributions, these probabilistic predictions are
produced from non-parametric methods, and then take the form of a single or a set of
quantile forecasts. The required and desirable properties of such probabilistic forecasts are
defined and a framework for their evaluation is proposed. This framework is applied for
evaluating the quality of two statistical methods producing full predictive distributions
from point predictions of wind power.These distributions are defined by a number of quan-
tile forecasts with nominal proportions spanning the unit interval.The relevance and inter-
est of the introduced evaluation framework are discussed. Copyright © 2007 John Wiley &
Sons, Ltd.
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Introduction
The large-scale integration of wind generation capacities induces difficulties in the management of a power
system. Also, an additional challenge is to conciliate this deployment with the ongoing deregulation of the
European electricity markets. Increasing the value of wind generation through the improvement of prediction
systems’ performance is one of the priorities in wind energy research needs for the coming years.1 A state of
the art on wind power forecasting has been published by Giebel et al.2

Most of the existing wind power prediction methods provide end-users with point forecasts. The parame-
ters of the models involved are commonly obtained with minimum least square estimation. Write pt+k the mea-
sured power value at time t + k, which can be seen as a realization of the random variable Pt+k. Then, denote
by p̂t+k|t a point forecast issued at time t for lead time t + k, based on a model M, its parameters ft, and the
information set Ωt gathering the available information on the process up to time t. Estimating the model para-
meters with minimum least squares makes that p̂t+k|t corresponds to the conditional expectation of Pt+k, given
M, Ωt and ft:
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(1)

A large part of the recent research works in wind power forecasting has focused on associating uncertainty
estimates to these point forecasts. Pinson and Kariniotakis3 have described two complementary approaches that
consist in providing forecast users with skill forecasts (commonly in the form of risk indices) or alternatively
with probabilistic forecasts. The present paper focuses on the latter form of uncertainty estimates, which may
be either derived from meteorological ensembles,4,5 based on physical considerations,6 or finally produced from
one of the numerous statistical methods that have appeared in the literature.7–11 They may take the form of
quantile, interval or density forecasts. If appropriately incorporated in decision-making methods, they permit
to significantly increase the value of wind generation. Recent developments in that direction include among
others methods for dynamic reserve quantification,12 for the optimal operation of combined wind-hydro power
plants,13 or finally for the design of optimal trading strategies in liberalized electricity pools.14

A set of standard error measures and evaluation criteria for the verification of point forecasts of wind has
been described by Madsen et al.15 However, evaluating probabilistic forecasts is more complicated than eval-
uating point predictions. While it is easy to appraise a single-point forecast as being false because the devia-
tion between predicted and measured power values is non-negligible, an individual probabilistic forecast cannot
be deemed as incorrect. Indeed, when an interval forecast states there is a 50% probability that expected power
generation (for a given horizon) would be between 1 and 1·6MW and that the actual outcome equals 0·9MW,
how can one tell if this case should be part or not of the 50% of cases for which intervals miss?

The aims of the present paper are to identify the required properties of probabilistic forecasts of wind 
power, and to propose a framework for evaluating these forecasts in terms of their statistical performance
(referred to as their ‘quality’). The ‘value’ of the probabilistic forecasts, which relates to the increased bene-
fits (i.e. monetary, CO2 savings or others) for forecast consumers from the use of such predictions, is not dealt
with here. For a discussion on these two aspects of quality and value, we refer to Pinson et al.16 Such an eval-
uation framework may allow forecast users to evaluate and compare rival approaches to wind power proba-
bilistic forecasting, and forecasters to identify weak points of their methods, which will require further
developments. In an operational environment, the proposed criteria can be used for monitoring forecast 
performance.

The first part of the paper concentrates on giving some definitions regarding the type of forecasts consid-
ered in the present paper. The proposed framework for evaluating probabilistic forecasts is then described, with
focus on practical definitions of the different aspects encompassed in the term ‘quality’ for probabilistic fore-
casts of wind power, as well as methods for their evaluation. This framework is consequently applied for com-
paring the quality of two competing methods for providing probabilistic predictions of wind power on the test
case of a single wind farm over a period covering almost 2 years. These two methods are adaptive quantile
regression9 and adapted re-sampling.11 This case study allows us to comment on the relevance of the described
framework and evaluation criteria. Other applications of the evaluation framework can be found in (i) Pinson
et al.,16 where it is used for evaluating probabilistic predictions obtained with adapted re-sampling and with
different types of point predictions used as input; (ii) Pinson et al.17 for the evaluation and comparison of quan-
tile forecasts obtained by using Gaussian adaptive estimation, quantile regression and ensemble predictions.
The paper ends with a discussion on some specific issues related to the sensitive aspect of reliability evalua-
tion, followed by general conclusions on the proposed evaluation framework.

Non-parametric Probabilistic Forecasts: Some Definitions and Remarks
Write ft the probability density function of the random variable Pt, and denote by Ft the related cumulative dis-
tribution function. Formally, provided that Ft is a strictly increasing function, the quantile qt

(a) with proportion
a ∈ [0, 1] of the random variable Pt is uniquely defined as the value x such that

(2)P P xt <( ) = a

p̂ Pt k t t k t+ += [ ]E M, ,tf Ω
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or equivalently as

(3)

Then, a quantile forecast q̂(a)
t+k|t with nominal proportion a is an estimate of q(a)

t+k produced at time t for lead time
t + k, given the information set Ωt up to time t. Note that only the aspects of evaluating the skill of marginal
probabilistic forecasts are treated here. Marginal probabilistic forecasts are produced on a per-horizon basis,
in contrast with simultaneous probabilistic forecasts, i.e. for which probabilities are defined over the whole
forecast length.

Interval forecasts (equivalently referred to as prediction intervals) give a range of possible values within 
which the true effect pt is expected to lie with a certain probability, its nominal coverage rate (1 − b), b ∈ [0, 1].
A prediction interval Î (b)

t+k|t produced at time t for time t + k is defined by its lower and upper bounds, which are
indeed quantile forecasts,

(4)

whose nominal proportions al and au are such that

(5)

This general definition of prediction intervals makes that a prediction interval is not uniquely defined by its
nominal coverage rate. It is thus also necessary to decide on the way they should be centred on the probabil-
ity density function. Commonly, it is chosen to centre (in probability) the intervals on the median, so that there
is the same probability that an uncovered true effect pt+k lies below or above the estimated interval. This trans-
lates to

(6)

Such prediction intervals are then referred to as central prediction intervals. A discussion on the other types of
prediction intervals whose bounds can be defined from equation (6) is given in chapter 4 of Pinson.11

If considering (assumed) normally distributed processes, or more generally symmetric target distributions,
estimated prediction intervals are centred on the point prediction p̂t+k|t itself and give the equally probable [given
(1 − b)] upward and downward margins in which the true effect pt+k may lie. Owing to symmetry, the mean
and median of these target distributions are equal. Moreover, the upper and lower sides of the intervals have
the same size. Therefore, whatever the nominal coverage rate, the point forecast p̂t+k|t is covered by the inter-
val forecast it is associated to. For a non-linear and bounded process such as wind generation, probability dis-
tributions of future power output may be skewed and heavy-tailed.11,18 They may even be multi-modal, owing
to the cut-off discontinuity in the power curve, or simply because distributions of future wind speed distribu-
tions may themselves be multi-modal. For these complex distributions, the median may significantly differ
from the mean, and thus central prediction intervals (for rather low nominal coverage rate) may not even cover
the point forecast value.

For most forecasting applications, an important question concerning the intervals arises: how to choose an
optimal nominal coverage rate? This question is also valid for the case of forecast users that would be pro-
vided with a unique quantile forecast of given nominal proportion. Bremnes19 states that revenue-maximiza-
tion strategies for trading wind generation on the Nord Pool electricity market only require a single quantile
forecast only, whose nominal proportion can be directly determined from the characteristics of the market (and
also provided that independence is assumed between volumes of wind generation on the market and market
prices). Though, for more general trading strategies, i.e. including the risk aversion of the market participant,
and for which the loss function of the forecast user is more complex, the proportion of this ‘optimal’ quantile
may be more difficult to determine, and may vary over time.14 Back to the case of prediction intervals, they
can be seen as embarrassingly wide when the nominal coverage is set at a value of 90% or larger, since they
would cover extreme prediction errors (or even outliers). In addition, working with high-coverage intervals
means that one aims at modelling the very tails of distributions. Clearly, the robustness of the prediction

a a b
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methods becomes a critical aspect. In contrast, if one sets a low nominal coverage rate, say 50%, intervals will
be more narrow and more robust with respect to extreme prediction errors. But, such low nominal coverage
rate will translate to future power values being equally likely to lie inside or outside these bounds. In both
cases, prediction intervals appear hard to handle and that is why an intermediate degree of confidence (75–85%)
seems a good compromise.20 Consequently, instead of focusing on a particular nominal coverage rate, pro-
ducing a forecast of the whole probability distribution of expected generation may be a relevant alternative.
In practice, if no assumption is made about the shape of the target distributions, a non-parametric forecast f̂ t+k|t

of the density function of the variable of interest at lead time t + k can be produced by gathering a set of m
quantiles forecasts such that

(7)

that is, with chosen nominal proportions spread on the unit interval. These types of probabilistic forecasts are
hereafter referred to as predictive distributions.

A Framework for Evaluating Non-parametric Probabilistic Forecasts
Since it has been observed that it was not reasonable to formulate assumptions regarding the shape of predic-
tive distributions of wind power, the majority of probabilistic forecasting methods described in the literature
avoid making such an assumption.7,10,11 This motivates the introduction of a specific framework dedicated to
the evaluation of wind power probabilistic forecasts, whatever the model involved.

An evaluation set consists of series of quantile forecasts, for a unique or various nominal proportions, and
observations. Let us say that this evaluation set is composed by N forecast series with forecast length kmax. One
can then apply the measures and scores introduced hereafter to this data set, regardless of any classification.
This will translate to an unconditional evaluation of the prediction quality. Though, there may be several vari-
ables that one would suspect to influence the quality of the intervals. The evaluation can then be made condi-
tional to these variables in order to reveal their influence. For instance, it is straightforward to consider that
the evaluation should be made conditional to the forecast horizon—it is indeed the case hereafter. Also, one
may consider other variables, e.g. level of predicted power, which are expected to impact the forecast quality.
The proposed evaluation framework allows for conditional quality evaluation as illustrated in the following
section.

Approach Proposal: Required and Desirable Properties
A requirement for probabilistic forecasts is that the nominal probabilities, i.e. the nominal proportions of quan-
tile forecasts, are respected in practice. Over an evaluation set of significant size, the empirical (observed) and
nominal probabilities should be as close as possible. Asymptotically, this empirical coverage should exactly
equal the pre-assigned probability. That first property is commonly referred to as reliability by meteorologists.21

In contrast, statisticians refer to the difference between empirical and nominal probabilities as the bias of a
probabilistic forecasting method.22,23 Consequently, this requirement of reliability of a given method translates
to the probabilistic predictions being unbiased.

Besides this requirement, it is highly desirable that probabilistic predictions provide forecast users with a
situation-dependent assessment of the prediction uncertainty. Their size should then vary depending on various
external conditions. For the example of wind power forecasting, it is intuitively expected that prediction inter-
vals (for a given nominal coverage rate) should not have the same size when predicted wind speed equals zero
and when it is near the cut-off speed. In the meteorological literature, the sharpness of probabilistic forecasts
is defined as the ability of these forecasts to deviate from the climatological mean probabilities, whereas res-
olution stands for the ability of providing different conditional probability distributions depending on the level
of the predictand.24 From the view of the meteorological literature, these two notions are equivalent when prob-
abilistic forecasts have perfect reliability.25

ˆ ˆ . . .f q i m at k t t k t m
i

+ +
( )= = ≤ < < < ≤{ }a a a, , . . . ,1 0 11 2
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Note that our proposal for the evaluation of sharpness and resolution will derive from a more statistical point
of view with focus to the shape of predictive distributions. Resolution is more generally considered the ability
of providing probabilistic forecasts conditional to the forecast conditions. This is because for a weather-related
process such as wind generation, not only the level of the predictand but also some other explanatory vari-
ables, e.g. wind direction, may have an influence on the prediction uncertainty. In parallel, sharpness is seen
as the property of concentrating the probabilistic information about future outcome. This definition derives
from the idea that reliable predictive distributions of null width would correspond to perfect point predictions.
A similar definition has been given by Gneiting et al.26 when discussing the skill of probabilistic forecasts, and
this definition is implicit in the proposal by Roulston et al.27 of using the ignorance score which is based on
the entropy of predictive distributions.

The framework proposed by Christoffersen28 for interval forecast evaluation, and which is widely used
among the econometric forecasting community,29,30 consists in testing the hypothesis of correct conditional
coverage of the prediction intervals. Such framework has been introduced for the specific case of one-step
ahead prediction intervals. It can be easily shown that this is equivalent to testing the correct unconditional
coverage of the intervals, as well as their independence. However, for the case of wind power forecasting, one
has to consider multi-step ahead predictions for which there exists a correlation among forecasting errors.*
Prediction intervals hence cannot be independent. Instead of applying Christoffersen’s framework, it appears
preferable to develop an evaluation framework based on an alternative paradigm: reliability is seen as a primary
requirement while sharpness and resolution represent the inherent value of the method. While reliability can
be increased by using some re-calibration methods (e.g. conditional parametric models5 or smoothed boot-
strap,32 sharpness and resolution are inherent properties that cannot be enhanced by applying simple post-
processing methods.25

Reliability
Non-parametric probabilistic predictions as defined above either comprise a single quantile forecast, or consist
in a collection of quantile forecasts for which the nominal proportions are known. Hence, evaluating the reli-
ability of probabilistic predictions is achieved by verifying the reliability of each individual quantile forecast.

Let us in the first stage introduce the indicator variable x (a)
t,k . Given a quantile forecast q̂ (a)

t+k|t issued at time t
for lead time t + k, and the actual outcome pt+k at that time, x (a)

t,k is given by

(8)

The time series {x (a)
t,k } (t = 1, . . . , N) of indicator variable is then a binary sequence that corresponds to the

series of ‘hits’ (if the actual outcome pt+k lies below the quantile forecast) and ‘misses’ (if otherwise) over the
evaluation set. It is by studying {x (a)

t,k } that one can assess the reliability of a time series of quantile forecasts.
Indeed, an estimate âk

(a) of the actual proportion ak
(a) = E[x (a)

t,k ], for a given horizon k, is obtained by calculat-
ing the mean of the {x (a)

t,k } time series over the test set:

(9)

where n(a)
k,1 and n(a)

k,0 correspond to the sum of hits and misses, respectively. They are calculated with

(10)
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* The correlation among forecasting errors mainly originates from the inertia in the meteorological prediction uncertainty. In addi-
tion, if the wind power prediction model includes an autoregressive part, it will also contribute to the correlation of errors in fore-
casts for successive look-ahead times. For the class of statistical structural models, the dependency among forecasting errors can
be explicitly formulated, see Madsen31 for instance.



This measure of empirical coverage serves as a basis for drawing reliability diagrams, which give the empir-
ical probabilities versus the nominal ones for various nominal proportions. The closer to the diagonal, the
better. In the present paper, reliability diagrams instead give the deviation from the ‘perfect reliability’ case
for which empirical proportions would equal the nominal ones. They then give the bias of the probabilistic
forecasting method for the nominal proportion a, calculated as the difference between these two quantities:

(12)

This idea is similar to the use of probability integral transform (PIT) histograms as proposed by Gneiting et
al.33 except that reliability diagrams directly provide that additional information about the bias of the method
considered.

In addition, these diagrams allow one to summarize the reliability assessment of various quantile forecast
series with different nominal proportions, and thus to see at one glance if a given method tends to systemati-
cally underestimate (or overestimate) the uncertainty. Figure 1 depicts an example of a reliability diagram 
that may serve for assessing the reliability of predictive distributions produced by a state-of-the-art method.
Bias values are calculated for each quantile nominal proportion, as an average over the forecast length, 
b
–(a) = 1/kmaxΣkbk

(a). For instance, the bias is of 0·9% for the quantile with nominal proportion 0·6. In other words,
the observed coverage for that quantile is of 59·1% instead of the required 60%. For the example in Figure 1,
the reliability of the quantile forecasts can be appraised as rather good since all deviations are lower than 2%.
However, the fact that quantiles are slightly overestimated for proportions lower than 0·5 and slightly under-
estimated for proportions above that value indicates that corresponding predictive distributions are slightly too
narrow. Note that if calculating the overall bias b

=
of predictive distributions for this test case, it would clearly

be close to 0. Such calculation would dilute the information relative to each single quantile, which does not
appear desirable. This remark is also valid for the case of evaluating the reliability of non-parametric predic-
tion intervals: it is not sufficient to only check if the nominal coverage of the intervals is respected. It is indeed
necessary to verify that both quantiles defining the interval are unbiased.

When focusing on point forecasting for non-linear processes, Tong34 explains that the quality of point pre-
diction methods may significantly be driven by some external factors, and thus that the quality of such methods
should be evaluated as a function of the level of explanatory variables, for different sub-periods of the evalu-
ation set, etc. A similar approach should be applied here with the aim of evaluating the correct conditional 

b ak k
a aa( ) ( )= − ˆ
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Figure 1. Example of a reliability diagram depicting deviations as a function of the nominal proportions, for the
reliability evaluation of a method providing probabilistic forecasts of wind generation



coverage of a given method. Correct conditional coverage can therefore be defined by: ‘whatever the chosen
grouping of the forecast/observation pairs from the evaluation, probabilistic predictions should be reliable’.
The interest of using such definition of correct conditional coverage will be illustrated in the following section.

Sharpness and Resolution
Remember that the proposed definition for sharpness corresponds to the ability of probabilistic forecasts to
concentrate the probabilistic information about future outcome. Hence, an intuitive approach to the evaluation
of sharpness for the case of interval forecast relates to studying the distribution of their size over the evalua-
tion set. For instance, Bremnes7 summarizes these distributions with box plots. Our proposal, following pre-
vious analyses by Nielsen et al.5 and Pinson et al.,17 is to focus on the mean size of the intervals only. If writing

(13)

the size of the central interval forecast [with nominal coverage rate (1 − b)] estimated at time t for lead time
t + k, a measure of sharpness for these intervals and for horizon k is given by d–k

(b), the mean size of the 
intervals:

(14)

Clearly, this measure cannot be used if aiming at evaluating one quantile forecast only. For the case of pre-
dictive distributions, for which forecasts are defined by a set of quantile forecasts, one can gather quantile fore-
casts by pairs, in order to obtain a set of central prediction intervals with different nominal coverage rates. One
can then use summarize the evaluation of the sharpness of predictive distributions with d-diagrams, which give
d–k

(b) as a function of the nominal coverage rate of the intervals. Such diagrams permit to better appraise the
shape of predictive distributions.

d-Diagrams can be drawn over the whole forecast length, i.e. by depicting d
=(b) = 1/kmaxΣkd

–
k
(b) as a function

of the nominal coverage rate of the intervals. However, as it is known that the uncertainty of power predic-
tions is significantly influenced by the forecast horizon, it is commonly accepted that a specific uncertainty
estimation model should be set up for each look-ahead time, and that their evaluation should be carried out
similarly. Wind power generation is a process for which the prediction uncertainty is situation-specific and
highly variable. More than the forecast horizon, this uncertainty may be influenced by several explanatory vari-
ables such as the level of predicted power or wind speed for instance. The resolution property has been defined
as the ability to generate different probabilistic information depending on the forecast conditions. Note that
predictive distributions must still be reliable. Thus, resolution can then be further defined as the ability of pro-
viding different predictive distributions under the requirement of conditional reliability. For its evaluation, one
can draw d-diagrams for different groupings of the forecast conditions, and compare the average shape of pre-
dictive distribution.

A Unique Skill Score
As for point forecast verification, it is often demanded that a unique skill score would give the whole infor-
mation on a given method performance. Such a measure would be given by scoring rules that associate a single
numerical value Sc( f̂ , p) to a predictive distribution f̂ if the event p materializes. Then, we can define as

(15)

the score under f̂ when the predictive distribution is f̂ ′.
Even if sharpness and resolution as introduced above are intuitive properties that can be visually assessed

with diagrams, they can only contribute to a diagnostic evaluation of the method. They cannot allow one to
objectively conclude on a higher quality of a given method. In contrast, a scoring rule such as that defined
above, if proper, would permit to do so. The propriety of a scoring rule rewards forecasters that express their
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true beliefs. Murphy35 refers to that aspect as the forecast ‘consistency’ and states that a forecast (probabilis-
tic or not) should correspond to the forecaster’s judgement. If we assume that a forecaster wishes to maximize
his/her skill score over an evaluation set, then a scoring rule is said to be proper if for any two predictive dis-
tributions, f̂ and f̂ ′, we have

(16)

The scoring rule Sc is said to be strictly proper if equation (16) holds with equality if and only if f̂ ′ = f̂ .
Hence, if f̂ corresponds to the forecasters’ judgement, it is by quoting this particular predictive distribution
that they will maximize their skill score. In a general manner, if a defined skill score is proper, then a higher
value of the skill score directly translates to a higher skill of the probabilistic forecasts considered. The pro-
priety of various skill scores defined for continuous density forecasts is discussed by Bröcker and Smith.36

If producing non-parametric probabilistic forecasts by quoting a set of m quantiles with various nominal
proportions [cf. equation (7)], it can be shown that any scoring rule of the form

(17)

with j(a i) the indicator variable for the quantile with proportion ai, si non-decreasing functions and h arbi-
trary, is proper for evaluating this set of quantiles.26 If m = 1, this resumes to evaluating a single quantile with
nominal proportion a, while the case m = 2 with a1 = b/2 and a2 = 1 − b/2 relates to the evaluation of a pre-
diction interval with nominal coverage rate (1 − b). Sc( f̂ , p) is a positively rewarding score: a higher score
value stands for a higher skill. In addition, the skill score introduced above generalizes scores that are already
available in the literature. For instance, for the specific case of central prediction intervals with nominal cov-
erage rate (1 − b), one retrieves an interval score that has already been proposed by Winkler37 by putting a1 =
b/2 and a2 = 1 − b/2, si(p) = 4p, (i = 1, 2), and h(p) = −2p. In parallel, if focusing on a single quantile only,
the scoring rule given by equation (17) generalizes the loss functions considered for model estimation in quan-
tile regression9,10,38 and local quantile regression.7 This loss function is used here for defining the scoring rule
for each quantile, i.e. with si(p) = p, and h(p) = −ap. Consequently, the definition of the skill score introduced
in equation (17) becomes

(18)

This score is positively oriented and admits a maximum value of 0 for perfect probabilistic predictions.
Using a unique proper skill score allows one to compare the overall skill of rival approaches, since scoring

rules such as that given above encompass all the aspects of probabilistic forecast evaluation. However, a unique
score cannot tell what are the contributions of reliability or sharpness and resolution to the skill (or to the lack
of skill).* The skill score given by equation (17) cannot be decomposed as this can be done for the case of the
continuously ranked probability score.39 Though, if reliability is verified in a prior analysis, relying on a skill
score permits to carry out an assessment of all the remaining aspects, namely sharpness and resolution.

Application Results
Earlier, the framework for the evaluation of non-parametric probabilistic forecasts in the form of a single quan-
tile forecast, or of a set of quantile forecasts, has been described. The case study of a wind farm for which
probabilistic forecasts are produced with two competing methods is considered. The various properties making
the quality of the methods considered are studied here.
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* This has already been stated by Roulston and Smith27 when introducing the ‘ignorance score’, which despite its many justifica-
tions and properties, has no ability to tell why a given method is better than another.



Description of the Case Study
Predictions are produced for the Klim wind farm, which is a 21MW wind farm located north of Jutland,
Denmark. The nominal power of that wind farm is hereafter denoted by Pn. The period for which point pre-
dictions are generated goes from March 2001 until the end of April 2003. Hourly power measurements for that
wind farm are also available over the same period. The point predictions result from the application of the
Wind Power Prediction Tool (WPPT) method,40 which uses meteorological predictions of wind speed and direc-
tion (with an hourly temporal resolution) as input, as well as historical measurements of power production.
Meteorological predictions have a forecast length of 48h and are issued every 6h from midnight onwards. But
then, point predictions of wind power are issued every hour: they are based on the most recent meteorologi-
cal forecasts and are updated every time a new power measure becomes available. They thus have a varying
forecast length: from 48h ahead for power predictions generated at the moment when meteorological predic-
tions are issued, down to 43h ahead for those generated 5h later. In order to have the same number of fore-
cast/observation pairs for each look-ahead time, the study is restricted to horizons ranging from 1 to 43h ahead.
All predictions and measures are normalized by the nominal power Pn of the wind farm, so that that they are
all expressed in percentage of Pn.

Two competing methods are used for producing probabilistic forecasts of wind generation. These methods
are the adapted re-sampling method described by Pinson11 and the adaptive quantile regression method intro-
duced by Møller et al.9 They both use the level of power predicted by WPPT as unique explanatory variable.
A specific model is set up for each look-ahead time. The memory length allowing time adaptivity of the methods
is chosen to be of 300 observations. In order to obtain predictive distributions of wind power, each method is
used to produce nine central prediction intervals with nominal coverage rates of 10, 20, . . . and 90%. This
translates to providing 18 quantile forecasts with nominal proportions going from 5 to 95% by 5% increments,
except for the median. Figure 2 gives an example of such probabilistic forecasts of wind generation, in the
form of a fan chart.

The first 3 months of data are utilized for initializing the methods and estimating the necessary parameters.
The remaining data are considered an evaluation set. After discarding missing and suspicious forecast/obser-
vation pairs, this evaluation set consists of 14,685 series of hourly predictions.
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Figure 2. Example of probabilistic predictions of wind generation in the form of non-parametric predictive
distributions. Point predictions are obtained from wind forecasts and historical measurements of power production, with

the WPPT method. They are then accompanied with interval forecasts produced by applying the adapted re-sampling
method. The nominal coverage rates of the prediction intervals are set to 10, 20, . . . and 90%. Power values are

expressed in percentage of the nominal power Pn of the wind farm



Reliability Assessment
Reliability is assessed first, since it has been defined as a primary requirement. The time series of indicator
variables is generated by separately considering the time series of quantile forecasts for each method, for each
look-ahead time and for each nominal proportion. By calculating the overall bias b

=
for both methods, i.e. over

the whole range of nominal proportions and look-ahead time, one obtains the values given in Table I. These
bias values are very low, indicating the ability of the methods to globally respect the nominal probabilities.
Though, this single value may dilute the information about a method’s reliability, and this property should then
be evaluated conditionally to some variables. Here, the reliability of the methods is studied for each nominal
proportion (Figure 3), and also as a function of the look-ahead time (Figure 4).

The deviations from perfect reliability are small for both methods over the whole range of nominal pro-
portions, except for the very low ones (5 and 10%). Since distributions of power output are highly right-skewed
for low levels of predicted power, it is more difficult to predict in a very reliable way the quantiles whose
values are close to 0. It is interesting to see that the adapted re-sampling method tends to underestimate the
quantiles with very low proportions while the adaptive quantile regression method tends to overestimate them.
On a more general basis, predictive distributions are slightly too narrow. Note that these very low bias values
are to be related to the size of the evaluation set. Since this set is large, it is expected to witness low bias
values.

For the two methods considered in the present paper, a specific model is used for each look-ahead time.
Evaluating reliability as a function of the look-ahead time may allow one to detect some undesirable behav-
iour of the chosen method for probabilistic forecasting. From Figure 4, one can see that the bias of both methods
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Table I. Overall bias b
=

for both the adapted re-sampling and adaptive quantile
regression methods

Method Adapted re-sampling Adaptive quantile regression

b
=

[%] 0·218 0·082

The bias is calculated as the mean deviation from perfect reliability over the whole
range of forecast horizons, and over the whole range of nominal proportions.
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Figure 3. Reliability evaluation: bias values for each of the quantile nominal proportion, for both the adapted 
re-sampling and adaptive quantile regression method. Bias values are given as averages over the forecast length



is small over the whole forecast length, and that there is no trend that would consist in the bias increasing as
the forecast lead time gets further. Though, the bias for the adapted re-sampling method is significantly posi-
tive for all look-ahead times, which is due to the relatively large positive bias values for nominal proportions
0·05 and 0·1 (cf. Figure 3). Due to the varying maximum forecast length of the prediction series, the amount
of data for evaluation of reliability is one sixth of the length of the evaluation set for look-ahead time 48, one
third for look-ahead time 47, etc. This has to be taken into account when appraising the values of the evalua-
tion criteria in the present study.

Evaluation of the Quality of the Methods
A necessary statement before to carry on with the evaluation of sharpness or of the overall quality of the
methods is that they are reliable. This statement appears to be reasonable in view of the reliability assessment
carried out in the above paragraph.

Focus is now given to the sharpness of the predictive distributions produced from both methods. Figure 5
gathers d-diagrams drawn for specific forecast horizons, i.e. those related to 1h ahead, 12 and 30h ahead pre-
dictions, as well as an average over the forecast length. An example information that can be extracted from
these d-diagrams is that for 1h ahead predictions, both methods generate prediction intervals of 90% nominal
coverage—which has been considered unconditionally reliable—which have a size of 19% of Pn. This infor-
mation on the size of the intervals is of particular importance for practitioners who will use these intervals for
making decisions. By comparing the d-diagrams for the three different look-ahead times, one can see that pre-
dictive distributions are less sharp for further look-ahead time, reflecting that point predictions are less accu-
rate. The sharpness of both methods is very similar, with the adapted re-sampling method being sharper in the
central part of the predictive distributions and adaptive quantile regression sharper in the tail part. This may
indicate that the adaptive quantile regression method is more robust with respect to extreme prediction errors
or outliers.

The overall quality of predictive distributions obtained from the adapted re-sampling and adaptive quantile
regression methods is then evaluated by using the skill score given by equation (18). Skill score values are
calculated at each forecast time and for each forecast horizon. When averaged over the evaluation set, the skill
score as a function of the look-ahead time is obtained, as depicted in Figure 6. The overall skill score value,
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Figure 5. Sharpness evaluation: d-diagrams giving the sharpness of predictive distributions produced from the adapted
re-sampling and adaptive quantile regression method. These diagrams are for 1, 12 and 30h ahead forecasts, as well as

an average over the forecast length
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summarizing the overall quality of the methods by a unique numerical value, equals −0·65 for adapted re-sam-
pling and −0·64 for adaptive quantile regression. This shows that the latter method globally has a higher skill
than the former one. In addition, Figure 6 shows the skill of adaptive quantile regression (for this test case) is
slightly higher for each individual look-ahead time. This appears reasonable in regard to our comments such
that adaptive quantile regression was globally more reliable and such that both methods had similar sharpness.
However, when focusing on prediction intervals with a 50% nominal coverage rate, adapted re-sampling has
been found more reliable and sharper than adaptive quantile regression, but the latter method still has a higher
skill score than the former one. This may appear surprising, but actually the decisions on acceptable reliabil-
ity and higher sharpness from reliability and d-diagrams are subjective. They do not have the strength of the
propriety of the skill score. This finding indicates that some behaviours of the methods (desirable or unwanted)
are not visible from such global evaluation. A conditional evaluation of the quality of the methods will permit
to reveal these aspects.

Resolution Analysis from a Conditional Evaluation
Both probabilistic forecasting methods considered here use point predictions of wind power as explanatory
variable. The resulting probabilistic predictions should be conditional to the level of this variable and still be
reliable. This relates to the wanted resolution property of the probabilistic forecasting methods. Reliability of
predictive distributions is hereafter further assessed as a function of the level of the predictand. The condi-
tional reliability of probabilistic predictions is highly desirable. If the process considered was homoskedastic,
this conditional evaluation of reliability would not appear as necessary. It could also be of interest here to study
the conditional reliability of predictive distributions given some other explanatory variable, e.g. predicted wind
speed or direction. This may give some insight on additional variables to consider as input to the probabilis-
tic forecasting methods. However, the aim of the present paper is to illustrate the interest of such evaluation
and not to carry out the full evaluation exercise.

Because values of predicted quantiles (depending on the nominal proportion) may not span the whole range
of possible power production values, it is decided to split the evaluation set in a number nbin of equally popu-
lated classes of point prediction values. This contrasts with the possibility of defining classes from threshold
power values, which could result in evaluating reliability over power classes with very few pairs of fore-
cast/observation. This exercise is carried out with nbin = 10. Table II gives the minimum, maximum and mean
predicted power values for every class. One clearly sees from this Table that the distribution of predictions is
concentrated on low power values. The 10% smallest power prediction values are comprised between 0 and
1·48% of Pn, while the 10% largest values are between 52·92 and 94·67% of Pn. Bias values are calculated for
each nominal proportion, but over the whole forecast length since no specific behaviour that would be related
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Table II. Characteristics of the equally populated classes of predicted power values used for the conditional evaluation
of the probabilistic forecasting methods

Class Min. power value [% Pn] Mean power value [% Pn] Max. power value [% Pn]

1 0 0·38 1·48
2 1·48 2·97 4·49
3 4·49 5·97 7·43
4 7·43 9·12 10·98
5 10·98 13·22 15·58
6 15·58 18·28 21·19
7 21·19 24·56 28·36
8 28·36 32·87 37·91
9 37·91 44·70 52·92

10 52·92 66·21 94·67

Each class contains 10% of the predicted power values.



to the forecast horizon has been observed. Figure 7 depicts the results of this exercise for four out of the 10
power classes, i.e. classes 2, 6, 8 and 9.

The size of the data set used for drawing each of these reliability diagrams is only 10% of that used for
drawing the reliability diagram of Figure 3. Therefore, larger deviations from perfect reliability may be con-
sidered more acceptable. Still, the data set contains 1485 forecast/observation pairs each, and bias values such
as those witnessed for power class 2 are significantly large. For this class of predicted power values, bias values
are up to 16% for the adapted re-sampling method. They do not reach such level for adaptive quantile regres-
sion, but they are nonetheless significant (up to 10%). An interesting point is that the adapted re-sampling
method largely underestimates the quantiles with low nominal proportions, i.e. they are too close to the zero-
power value, while the other method does the inverse. Note that power predictions for this power class are
contained between 1·48 and 4·49% of Pn. For such power prediction values, distributions of wind power output
are highly right-skewed and with a high kurtosis. In other words, they are very peaked and sharp close to the
zero-power value with a long thin tail going towards positive power values. In such case, it is very difficult to
accurately predict the quantiles with low nominal proportions. In addition, such deviations from perfect reli-
ability express deviations in terms of probabilities. In terms of numerical values, predicted quantiles must be
very close to the real ones in this range of predicted power values.

Concerning the other reliability diagrams of Figure 7, the power classes considered are more related to the
linear part of the power curve, for which predictive distributions are more symmetric and less peaked. The
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Figure 7. Conditional reliability evaluation: reliability is assessed as a function of the level of predicted power.
Forecast/observation pairs are sorted in 10 equally populated classes of predicted power values. Reliability diagrams

are given for power classes 2, 6, 8 and 9



reliability diagram related to power class 9 gives an example of adapted re-sampling being more reliable than
adaptive quantile regression for some range of power values. But actually, for 7 out of the 10 power classes,
the latter method has been found to be more reliable than the former one, i.e. with lower bias values over the
whole range of quantile nominal proportions. This shows that for this test case, adaptive quantile regression
is actually more conditionally reliable than adapted re-sampling.

The conditional evaluation of sharpness and skill (conditional to the level of predicted power) is given in
Figures 8 and 9, respectively. Figure 8 depicts the d-diagrams for the four power classes considered above.
Sharpness is calculated as an average over the whole forecast length, and is representative of the evaluation
that could be carried for each look-ahead time. Figure 9 shows skill diagrams that give the value of the skill
score for each quantile separately, averaged over the whole forecast length.

Let us focus on power class 2 in the first stage. It has been explained earlier that adaptive quantile regres-
sion was more reliable for this power class, especially for low quantile nominal proportions. In addition, one
sees that the predictive distributions produced with this method appear to be sharper. Though, skill score values
are very similar for low quantile nominal proportions, supporting our comment such that the large deviations
from perfect reliability are to be counterbalanced by the fact that the numerical difference between predicted
and ‘true’ quantiles must be very small. In this class, it is pretty clear that adaptive quantile regression is more
skilled. For the others, the difference in skill is very small, but adaptive quantile regression is found more
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Figure 8. Conditional sharpness evaluation: sharpness is evaluated as a function of the level of predicted power.
Forecast/observation pairs are sorted in 10 equally populated classes of predicted power values. d-Diagrams are given

for power classes 2, 6, 8 and 9



skilled for all of them. This is even valid for power classes such as power class 9, for which adapted re-
sampling is found to be more reliable, and generates sharper predictive distributions. d-Diagrams are infor-
mative on the shape of predictive distributions: here, they show that the two methods behave differently depend-
ing on the level of predicted power, either on the whole range of nominal proportions, or on specific parts of
predictive distributions. For example in power class 6, adaptive re-sampling is sharper in the central part of
predictive distributions but not in the tail part. Though, one must understand that this sharpness criterion does
not allow to conclude on a higher skill of such or such method. Finally, the d-diagrams of Figure 8 show that
the shape of predictive distributions varies depending on the level of predicted power by the WPPT method.
Especially, they are very sharp with thin tails for low power values (class 2), and wider with thicker tails for
power values in the linear part of the power curve (classes 6, 8 and 9). This demonstrates the ability of the
two statistical methods to provide different—and still reliable—probabilistic information depending on the
forecast conditions, which are here characterized by the level of predicted power only.

Discussion on Reliability Assessment and Hypothesis Testing
The interest of reliability diagrams lies in their direct visual interpretation. However, this visual comparison
between nominal and empirical probabilities introduces subjectivity, since the decision of whether probabilis-
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Figure 9. Conditional skill evaluation: the skill of predictive distributions is evaluated as a function of the level of
predicted power. Forecast/observation pairs are sorted in 10 equally populated classes of predicted power values. 
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tic predictions can be considered reliable or not is left to the analyst. This has been illustrated by the condi-
tional evaluation exercise. This visual assessment of reliability contrasts with the more objective framework
based on hypothesis testing used by the econometric forecasting community. Initially, Christoffersen28 pro-
poses a likelihood ratio c2-test for evaluating the unconditional coverage of interval forecasts of economic vari-
ables, accompanied by another test of independence. Actually, the use of hypothesis testing is also not
appropriate in this case. This is because one formulates a null hypothesis such that ‘the considered method is
reliable’, and consequently uses the inability to reject this null hypothesis for concluding on acceptable relia-
bility. However, this ability to reject a null hypothesis in that manner is an inconclusive result.41 Instead, reject-
ing a null hypothesis formulated as ‘the considered method is not reliable’ would permit to conclude on an
acceptable reliability.

A similar application of hypothesis tests in the area of wind power forecasting relates to Bremnes.7,19 He
describes a Pearson c2-test for evaluating the reliability of the quantiles produced from a local quantile regres-
sion approach. However, c2-tests rely on an independence assumption regarding the sample data. Owing to the
correlation of wind power forecasting errors, it is expected that series of interval hits and misses can come
clustered together in a time-dependent fashion. This actually means that independence of the indicator vari-
able sequence cannot be assumed in our case. Consequently, serial correlation invalidates the significance level
of hypothesis tests. In general, it is known that statistical hypothesis tests cannot be directly applied for assess-
ing the reliability of probabilistic forecasts due to the either serial or spatial correlation structures.42 Pinson et
al.17 illustrate this result by the use of a simple simulation experiment where a quantile forecast known to be
reliable is considered. It is shown that, except for 1-step ahead forecasts, the correlation invalidates the level
of significance of the tests. It is demonstrated that this is because the correlation inflates the uncertainty of the
estimate of actual coverage. Therefore, statistical hypothesis tests cannot be directly applied unless the corre-
lation structure in the time series of indicator variable is previously removed.

An alternative to the use of hypothesis testing (and which is more appropriate, owing to our comment on
the wrong use of hypothesis testing) consists in adding confidence bars in reliability diagrams.43 This permits
to inform on how to interpret the reliability estimates in regard to the characteristics of the evaluation set. In
addition, this nicely goes along with the idea of the visual assessment of reliability via reliability diagrams.
However again, for the specific case of multi-step ahead probabilistic forecasts of wind generation, the corre-
lation structure needs to be considered for associating these bars to the reliability estimates. This may be done
by using non-parametric methods for dependent data, as described by Lahiri44 for instance, and will be the
focus of further developments.

In parallel, note that when using the skill score, one could argue that a higher value of the skill score would
just mean the corresponding method has a higher skill on the specific data set used for evaluation, and might
not translate to a higher absolute skill whatsoever. In such case, one would envisage to use hypothesis testing
in order to conclude (or not) on this question of a higher absolute skill. Again, the correlation issue would step
in and should be dealt with carefully. This point may also be the topic of further research.

Conclusions
Probabilistic predictions are becoming a common output of wind power prediction systems. They aim at giving
information on the forecast uncertainty in addition to the more classical point predictions. The question of how
to evaluate probabilistic forecasts of wind power needs to be discussed, with consideration given to specific
aspects of wind power forecasting. It has been explained why the existing frameworks introduced for some
other forecasting applications are not appropriate for the wind power case. This paper comprises a proposal
directed towards diagnostic evaluation of probabilistic predictions of wind power. The described evaluation
framework is composed of measures and diagrams, with the aim of providing useful information on each of
these properties, namely reliability, sharpness, resolution and skill. The use of the proposed evaluation frame-
work for appraising the quality of two state-of-the-art methods for wind power probabilistic forecasting on a
real-world case study has allowed us to illustrate the relevance of these criteria, and to comment on the proper
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way to assess a method’s quality. The importance of carrying out this evaluation, conditional to the level of
some explanatory variables, has also been underlined. This is because wind power generation is a complex
stochastic process for which the forecast uncertainty is influenced by a large number of external factors.

The decision of whether a given probabilistic forecasting method is reliable or not is subtle and further devel-
opments of the framework are needed for better concluding on that aspect. In parallel, the intuitive measure
of sharpness based on the size of interval forecasts is very informative. Though, it has been explained that it
cannot permit—even if it is often done in practice—to conclude on a higher skill of a given method. For that
purpose, it is indeed more appropriate to rely on proper skill scores, which have nice theoretical properties
insuring that a higher skill score value corresponds to a higher quality. Finally, appraising the resolution of a
probabilistic forecasting method necessitates a conditional evaluation of the other properties. For the specific
case of the wind power application, a higher resolution of probabilistic forecasts will be achieved by better
understanding and including the influence of external factors, e.g. related to meteorological conditions, on the
forecast uncertainty. Statistical methods such as those considered in the present paper may be straightforwardly
enhanced for including more explanatory variables known to impact on forecast uncertainty. Alternatively, it
is expected that probabilistic predictions derived from meteorological ensemble forecasts would have a higher
resolution, though their reliability is still a sensitive aspect. The proposed framework will be used as a basis
for comparing these competing approaches to probabilistic forecasting of wind generation.

Focus has been given here to the quality of probabilistic predictions, i.e. to their statistical performance.
While increasing this quality is the main focus of forecasters, forecast users are mainly interested in their value,
i.e. the benefits resulting from the use of predictions in decision making. It will be of particular importance to
show how a higher quality of probabilistic predictions translates to a higher value. More particularly, the role
of increased reliability, sharpness or resolution in providing (or not) additional value should be highlighted.
This issue is clearly problem-dependent, as a trader or a transmission system operator will not make the same
use of the probabilistic forecasts of wind generation.
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