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Abstract
The magnitude of power fluctuations at large offshore wind
farms has a significant impact on the control and management
strategies of their power output. If focusing on the minute
scale, one observes successive periods with smaller and larger
power fluctuations. It seems that different regimes yield dif-
ferent behaviours of the wind power output. This paper con-
centrates on the statistical modelling of offshore power fluctu-
ations, with particular emphasis on regime-switching models.
More precisely, Self-Exciting Threshold AutoRegressive (SE-
TAR), Smooth Transition AutoRegressive (STAR) and Markov-
Switching AutoRegressive (MSAR) models are considered. The
particularities of these models are presented, as well as meth-
ods for the estimation of their parameters. Simulation results
are given for the case of the Horns Rev and Nysted offshore
wind farms in Denmark, for time-series of power production
averaged at a 1, 5, and 10-minute rate. The exercise consistsin
one-step ahead forecasting of these time-series with the various
regime-switching models. It is shown that the MSAR model,
for which the succession of regimes is represented by a hidden
Markov chain, significantly outperforms the other models, for
which the rules for the regime-switching are explicitly formu-
lated.
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1 Introduction

FUTURE developments of wind power installations are
more likely to take place offshore, owing to space avail-

ability, less problems with local population acceptance, and
more steady winds. This is especially the case for coun-
tries that already experience a high wind power penetration
onshore, as for instance Germany and Denmark. This lat-
ter country hosts the two largest offshore wind farms world-
wide: Nysted and Horns Rev, whose nominal capacities are
of 165.5 and 160 MW, respectively. An overview of offshore
wind energy in Europe is given in [1].

Such large offshore wind farms concentrate a high wind
power capacity at a single location. Onshore, the same level
of installed capacity is usually spread over an area of signifi-
cant size, which yields a smoothing of power fluctuations [2].
This spatial smoothing effect is hardly present offshore, and
thus the magnitude of power fluctuations may reach very sig-
nificant levels. Modelling the power fluctuations for the spe-
cific case of offshore wind farms is a current challenge [3],
for better forecasting offshore wind generation, developing
control strategies, or alternatively for simulating the combi-
nation of wind generation with storage. The present paper

investigates the applicability and performance of some sta-
tistical models.

Operators of offshore wind farms often observe abrupt
changes in power production. The fast variations can be re-
lated to the turbulent nature of the wind. They are smoothed
out when considering the cumulative production for the wind
farm, since turbines are spread over a pretty large area. In
addition, when inspecting power production data averaged
at a few-minute rate, one observes variations that are due
to slower local atmospheric changes e.g. frontline passages
and rain showers [4]. The example of a 10-day episode
with wind power production at Horns Rev, consisting of 10-
minute averages, is depicted in Fig.1. These meteorological
phenomena add complexity to the modelling of wind power
production, which is already non-linear and bounded owing
to the characteristics of the wind-to-power conversion func-
tion. Such succession of periods with power fluctuations
of lower and larger magnitudes calls for the use of regime-
switching models. Here, it is explained how to apply the Self-
Exciting Threshold AutoRegressive (SETAR) model, the
Smooth Transition AutoRegressive (STAR) model, as well
as the Markov-Switching AutoRegressive (MSAR) model for
that purpose. Their performance are evaluated on a one-step
ahead forecasting exercise, and compared to those of linear
models, i.e. AutoRegressive Moving Average (ARMA) mod-
els. The available data consist in time-series of power pro-
duction averaged at a 1, 5, and 10-minute rate, for the Horns
Rev and Nysted wind farms.

2 From linear to regime-switching
models

Generated wind power is considered hereafter as a stochas-
tic process for which statistical models are set up in order to
describe its temporal evolution. The notationyt is used for
denoting both the state of the stochastic process at timet and
the measured value at that time. All the measured power val-
ues over the considered period are gathered in the time-series
{yt}, t = 1, . . . , T , whereT is the total number of succes-
sive observations. The setΩt = (y1, y2, . . . , yt) that contains
all the observations up to timet, is referred to as the infor-
mation set. Our framework is that of univariate time-series
modelling, i.e. no explanatory variable is used.

The well-known linear ARMA model is briefly introduced
and will be used as a benchmark. It serves as a basis
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Figure 1: Wind power generated at Horns Rev over a 10-day episode in August 2005. Power values consist in 10-minute averages, normalized by the nominal
powerPn of the wind farm (160 MW).

for constructing the regime-switching models. The term
‘regime’ originates from the assumption such that the con-
sidered stochastic process switches between a finite number
of distinct (and most often linear) models. Denote byR the
number of these regimes. The SETAR and STAR models are
consequently presented, with focus given to the estimation
of their parameters, and their use for time-series forecast-
ing. For these two families of models, the switches from one
regime to the other are governed by an observable process,
i.e. by some function of lagged values of{yt}.

2.1 The baseline ARMA model

The linear ARMA(p, q) model encompasses an autoregres-
sive (AR) part of orderp and a moving average (MA) part of
orderq

yt = θ0 +

p
∑

i=1

θiyt−i +

q
∑

j=1

φjεt−j + εt (1)

where{εt} is a white noise process, i.e. a purely random pro-
cess with zero mean and varianceσε

2 < ∞. For the theory
related to ARMA models we refer to e.g. [5]. Let us denote
by Θa the parameter set, that is,

Θa = (θ0, . . . , θp, φ1, . . . , φq, σε)
⊤ (2)

with .⊤ the transposition operator.Θa is obtained with Max-
imum Likelihood (ML) estimation with a Gaussian assump-
tion on the distribution of residuals [5].

At time t−1, the set of parametersΘa can be used for cal-
culating the one-step ahead point forecastŷt|t−1 for the con-
sidered ARMA(p, q) process. This prediction corresponds to
the conditional expectation of̂yt givenΘa and the informa-
tion setΩt−1, and is readily given by

ŷt|t−1 = θ0 +

p
∑

i=1

θiyt−i +

q
∑

j=1

φjεt−j (3)

ARMA models have already been applied for the mod-
elling of wind power time-series. For instance, Milligan et

al [6] have found them appropriate for producing 10-minute
ahead forecasts of wind generation for onshore wind farms.
In addition, Madsen [7] has shown that only little could
be gained by applying more complex models i.e. bilinear or
STAR models for such short horizons. Here, ARMA models
are considered as a benchmark for comparison with the more
advanced regime-switching models.

2.2 The SETAR model

A Self-Exciting Threshold AutoRegressive (SETAR) model
is a piecewise linear model with an AR part for each of theR

regimes, and for which the current regime is determined by
a function of lagged values of the time-series [8]. This may
yield abrupt switches from one regime to the other. Thresh-
old valuesrk, k = 1, 2, . . . , R − 1 define the intervals on
which the various AR parts are active.

The SETAR(R; p1, p2, . . . , pR) model is given by

yt = θ
(mt)
0 +

pmt
∑

i=1

θ
(mt)
i yt−i + σmt

εt (4)

where for a given regimek, pk andσk
2 denote the order of

the AR model and the related variance of the noise sequence.
{εt} is a white noise process with unit variance, such thatεt

is independent ofΩt−1. {mt} is the sequence of regimes,
taking values in{1, 2, . . . , R}, for which eachmt is defined
by

mt =



















1, yt−d ∈ ] −∞; r1] (regime 1)
2, yt−d ∈ ]r1; r2] (regime 2)
...

...
R, yt−d ∈ ]rR−1;∞[ (regimeR)

(5)

with d seen as a lag parameter.
The parameters of the SETAR model are estimated

with the Minimum Mean Square Error (MMSE) estimation
method. Let us write the parameter setΘe for the SETAR
model as

Θe = (θ, r, σ)⊤ (6)



with

θ = (θ
(1)
0 , . . . , θ(1)

p1
, . . . , θ

(R)
0 , . . . , θ(R)

pR
)⊤ (7)

r = (r1, r2, . . . , rR−1)
⊤ (8)

σ = (σ1, σ2, . . . , σR)⊤ (9)

that is, as the collection of the AR model coefficients, the
vector of threshold values, and the vector of standard devia-
tions of the noise sequence in each regime, respectively.

Assume that the number of regimes and the order of each
AR part are known. Then, the objective function to be mini-
mized over a dataset of lengthT is

S(Θe) =

T
∑

t=pmax+1

(yt − ŷt|t−1)
2 (10)

wherepmax = max(p1, p2, . . . , pR). ŷt|t−1 denotes the one-
step ahead prediction, which can be readily obtained as the
conditional expectation ofyt givenΩt−1 and the set of pa-
rametersΘe

ŷt|t−1 = θ
(mt)
0 +

pmt
∑

i=1

θ
(mt)
i yt−i (11)

with the regimemt at timet determined according to Eq. (5).
The optimal parameter set̂Θe is finally

Θ̂e = argmin
Θe

S(Θe) (12)

The above minimization problem can reduce to a linear
least squares problem for the estimation of the parameters of
the AR models given the threshold values, by concentrating
the sum of squares. In this case, the Weighted Least Squares
(WLS) estimatêθ of the AR parameters can be calculated as

θ̂(r) =
(

x̃⊤x̃
)−1

x̃y (13)

wherex̃ is a matrix for which every row contains past values
of yt for each regime multiplied with 0 or 1 depending on the
regime sequence. For instance, if the process is in regimeR

at timet, thetth row of x̃ (denoted byxt
⊤) is built as

xt
⊤ = xt|mt=R

⊤ = (0, . . . , 0, 1, yt−1, . . . , yt−pR
) (14)

From this WLS formulation of the AR parameter estima-
tion, the objective function formulated in Eq. (10) simplifies
to a function of the thresholds only, so that the optimal thresh-
old values are found as

r̂ = argmin
r

T
∑

t=pmax+1

(yt − θ̂(r)⊤xt)
2 (15)

and the corresponding AR parameter estimatesθ̂(r) (in a
MMSE sense) are finally computed with Eq. (13).

Since the above optimization problem might prove to have
a lot of local minima, the initialization of the optimization
process is crucial. Here, it has been initialized with different
starting points spread over the set of possibler, chosen after
inspecting the data.

2.3 The STAR model

Often, abrupt changes between regimes are not satisfactory,
even though separate regimes have been clearly identified.
Smooth Transition AutoRegressive (STAR) models have
been introduced in the literature in order to feature smooth
(and controllable) transitions between regimes [9]. The
Smooth Transition Bilinear (STBL) model, which belongs
to the family of STAR models, has already been successfully
applied for describing wind speed variations [7]. For one-
step ahead forecasting of half-hourly averaged data, Mad-
sen [7] has described its performance as slightly better than
that of a simple AR(1) model. Focus is given here to the
multiple-regime STAR (that we will, for convenience, re-
fer to as STAR only), for which the value of the considered
stochastic process{yt} at timet is given as a weighted av-
erage of several AR parts. The weights assigned to the AR
parts are a function of lagged values of{yt}. For a number of
regimesR, with an AR model of orderpk in thekth regime,
the STAR(R; p1, p2, . . . , pR) is given by

yt =

R−1
∑

k=1

((

θ
(k)
0 +

pk
∑

i=1

θ
(k)
i yt−i

)

g̃k(zt)

+



θ
(k+1)
0

pk+1
∑

j=1

θ
(k+1)
j yt−j



 gk(zt)

)

+ εt (16)

with

g̃k(zt) = 1 − gk(zt) (17)

where{εt} is a white noise process with varianceσε
2, andgk

is a smooth function that controls the transition between the
kth and(k+1)th regimes.gk(z) takes values in the unit inter-
val. The regime variablezt can be defined as a lagged value
yt−d of the stochastic process (d is then the lag parameter),
or alternatively as an average of a set of lagged values.

The choice of the transition function depends on which
type of behaviour is to be modelled. The two most popular
transition functions are the exponential and logistic ones. The
latter is chosen here, since it permits to more clearly separate
the different regimes. The logistic function is a 2-parameter
function defined as

gk(z) = (1 + exp (−γk(z − ck)))−1
, γk > 0 (18)

whereγk is the slope parameter, which controls the transition
speed between the regimesk andk + 1, andck is the mid-
point between these two regimes. Note that a STAR model
with a logistic transition is equivalent to the SETAR model
introduced above whenγk → ∞ with zt = yt−d.

The estimation method of the AR parameters for the STAR
model is very similar to that described above for the case of
SETAR models. Write

Θs = (θ,Γ, c, σε)
⊤ (19)

the set of parameters, with

Γ = (γ1, γ2, . . . , γR−1)
⊤ (20)

c = (c1, c2, . . . , cR−1)
⊤ (21)



which are the parameters of the transition functions,σε
2 the

variance of the white noise process, and withθ the parame-
ters of the AR models in each regime, as given by Eq. (7) for
SETAR models. The MMSE estimate ofΘs is obtained by
minimizing an objective functionS(Θs) that is equivalent to
that of Eq. (10), but for which the one-step ahead prediction
ŷt|t−1 is this time calculated with

ŷt|t−1 =
R−1
∑

k=1

((

θ
(k)
0 +

pk
∑

i=1

θ
(k)
i yt−i

)

g̃k(zt)

+



θ
(k+1)
0

pk+1
∑

j=1

θ
(k+1)
j yt−j



 gk(zt)

)

(22)

Then, assuming thatR and the order of the AR part in each
regime, as well asΓ andc are known, the MMSE estimate of
θ can be readily obtained from a WLS formulation

θ̂(Γ, c) =
(

x̃⊤x̃
)−1

x̃y (23)

wherex̃ is the weighted regression matrix, for which every
row contains for each regime lagged values of{yt}, weighted
by the value of the transition function at the given time step.
For instance, if considering a STAR(2; 1, 1) model, withγ

andc the parameters of the logistic transition functiong, the
tth row of x̃ is given by

xt
⊤ = (g̃(zt), yt−1g̃(zt), g(zt), yt−1g(zt)) (24)

From this WLS formulation, the MMSE estimate ofΘs

is obtained by minimizing a reduced form of the objective
function, i.e.

Θ̂s = argmin
(Γ,c)

T
∑

t=1

(yt − θ̂(Γ, c)⊤xt)
2 (25)

with an appropriate nonlinear optimizer.̂θ is consequently
calculated with Eq. (23). Like for the case of SETAR models,
the optimization process may be sensitive to the choice of
initial values forΓ andc, and may thus reach local optima.
This optimization process is therefore initialized with a set
of threshold values spread over the set of possible values,
chosen after inspection of the data. In parallel, the initial Γ is
chosen to be a unit vector.

3 A regime-switching model governed
by a hidden Markov chain

The models described above rely on an observable process
for determining the actual regime, which is determined as
a function of past values of the process. Markov Switch-
ing AutoRegressive (MSAR) models propose an alternative
to this observable regime-switching modelling, by allowing
the switches to be governed by an unobservable process. It
is assumed to be a Markov chain. A nice feature of such ap-
proach is that it permits to reflect the impact of some external
factors on the behaviour of certain time-series [10]. Indeed,
it has been found particularly suitable for modelling the tem-
poral evolution of weather variables, such as daily rainfall

occurrences [11] or wind fields [12, 13] especially because
it manages to capture the influence of some complex mete-
orological features e.g. related to the motion of large meteo-
rological structures. For the specific case of the fluctuations
of offshore wind generation, our aim is to use this hidden
Markov chain for describing meteorological features govern-
ing the regimes that cannot be determined from past values
of measured power production only. MSAR models and the
estimation of their parameters are briefly presented here. An
extended description is available in [14].

3.1 Description of MSAR models

MSAR models resemble SETAR models in their formula-
tion. If consideringR regimes and AR models of orders
p1, p2, . . . , pR for each of these regimes, the corresponding
MSAR(R; p1, . . . , pR) model is indeed given by

yt = θ
(st)
0 +

pst
∑

i=1

θ
(st)
i yt−i + σst

εt (26)

where{εt} is a white noise process with unit variance,σk
2

the variance of the noise sequence in thekth regime, and
{st} the regime sequence. Even though the regime se-
quence for MSAR models is unobservable, it is assumed that
{st} follows a first order Markov chain on the finite space
{1, . . . , R}: the regime at timet is determined from the
regime at timet − 1 only, in a probabilistic way

P (st = j|st−1 = i, st−2, . . . , s0) = P (st = j|st−1 = i)

(27)

All the probabilities governing the switches from one regime
to the other are gathered in the so-called transition matrixP,
for which the elementpij represents the probability of being
in regimej given that the previous regime wasi, as formu-
lated in Eq. (27). P is such that:(i) all the elements on a
given row sum to 1 since theR regimes represent all regimes
that can be reached at any time;(ii) all pij are positive in or-
der to ensure ergodicity, which means that any regime can be
reached eventually.

The setΘm of model parameters for MSAR models,

Θm = (θ(1), . . . , θ(R), σ,P)⊤ (28)

gathers the parameters of the AR parts in each regime,

θ(j) = (θ
(j)
0 , θ

(j)
1 , . . . , θ(j)

pj
)⊤, j = 1, . . . , R (29)

the standard deviation of the noise sequence in all regimes,

σ⊤ = (σ1, σ2, . . . , σR)⊤ (30)

as well as the transition matrixP.
As an illustration, a MSAR(2; 1, 1) model is simulated

here. The transition matrixP is such that

P =

(

0.95 0.05
0.05 0.95

)

(31)

and the other model parameters (i.e. AR coefficients and vari-
ance in each regime) are

(θ(1)⊤, θ(2)⊤, σ⊤) = (1, .9, 5, .8, 0.8, 1.4) (32)



Figure 2: Simulation of a MSAR(2;1,1) process over a period of 500 time-steps. The transition matrix is given by Eq. (31), and the AR coefficients and variance
in each regime by Eq. (32). Top: simulated process{yt}. Bottom: regime sequence{st}.

The evolution of this MSAR process over a period ofT =
500 time-steps is depicted in Fig.2. The top part of the Figure
shows the simulated process{yt}, while the bottom part is
related to the evolution of the regime sequence{st}. Owing
to the choice of transition probabilities the switches between
the two regimes are pretty rare.

3.2 Estimation

Estimating the parameters of MSAR models is more compli-
cated than for the case of the regime-switching models with
observable regime sequences. The method described in the
following is based on the Expectation Maximization (EM)
algorithm, which consists in an iterative method for maxi-
mizing the likelihood [15]. This two-step algorithm includes
first an expectation step, for which the optimal inference of
the regime sequence is determined, and a maximization step,
where the parameters of the AR parts are updated by using
the likelihood.

3.2.1 Optimal inference of regimes

A necessary assumption for determining the optimal infer-
ence of the regime sequence is that the number of regimes
R, the order of the AR parts, as well as the set of parame-
tersΘm are known. Even in this case, it is not possible to
readily say in which regime the process belongs to for each
observation. The solution to that problem is to consider a fil-
tered probabilistic inference of the hidden regime sequence
given the data [10]. Define the filtered probabilityξ(j)

t|t as
the conditional probability ofst being in regimej, given the
information setΩt at timet andΘm, i.e.

ξ̂
(j)
t|t = P (st = j|Ωt, Θm) (33)

These filtered probabilities for every regime can be arranged
in a vector of filtered probabilities that we denote byξ̂t|t.

The filtered probabilistic inference allows one to itera-
tively calculatêξt|t starting fromt = 1, by drawing a simple

relation between̂ξt|t andξ̂t−1|t−1 given the observations up
to timet − 1 and the model parameters. Following [14], this
relation writes

ξ̂t|t =
ξ̂t|t−1 ⊙ ηt

1R
⊤(ξ̂t|t−1 ⊙ ηt)

(34)

where⊙ denotes the element-wise multiplication,1R is a
vector of ones of dimensionR, and wherêξt|t−1 is given by

ξ̂t|t−1 = P⊤ξ̂t−1|t−1 (35)

Finally, ηt is the vector that gathers at timet the conditional
densities ofyt, given that the regime sequence is in such or
such regime. From a Gaussian assumption on the noise se-
quence in each regime,εt|st ∼ N (0, σst

2), thejth element
of ηt is

ηt,j =
1√

2πσj

exp

(

− (yt − xt,j
⊤θ(j))2

2σj
2

)

(36)

with xt,j
⊤ = (1, yt−1, . . . , yt−pj

). It is also assumed that the
conditional density ofyt only depends on the current regime.
Eqs. (34) and (35) are often referred to as the Hamilton filter.
They can be used in an iterative manner in order the calculate
the vector of filtered probabilities for all observations.

Similarly, define the smoothed probabilitŷξ(j)
t|T , i.e. the

conditional probability of being in regimej at timet given
the whole datasetΩT and the model parametersΘm

ξ̂
(j)
t|T = P (st = j|ΩT , Θm) (37)



so that the sequence of smoothed probabilities related to the
regime sequence can be calculated recursively with

ξ̂t|T = ξ̂t|t ⊙
(

P

(

ξ̂t+1|T ⊘ P⊤ξ̂t|t

))

(38)

with ⊙ and⊘ the element-wise multiplication and division,
respectively [14].

3.2.2 Estimation of the model parameters with the EM
algorithm

The EM algorithm is an iterative method that permits for
MSAR models to estimate the transition matrix, the parame-
ters of the AR parts and the variance in each regime, with the
aim of maximizing the conditional log-likelihoodℓ(Θm|ΩT )
of the model parameters. The first step of the algorithm i.e.
the expectation step, relates to the inference of the regimese-
quence (cf. above Paragraph). The second part, i.e. the max-
imization step, consists in the application of a set of update
equations for the subsets of models parametersθ(j), σ, and
P. The maximization of the likelihood is carried by succes-
sively applying expectation and maximization steps. Even
though the conditional log-likelihood is not directly usedin
the method, it can be shown that the EM algorithm asymptot-
ically maximizes that likelihood [16]. In addition, the evolu-
tion of its value can be monitored since it can be computed at
each expectation step [14].

Each elementpij of the transition matrixP can be esti-
mated by visiting the sequence of smoothed probabilities and
by applying the following equation:

p̂ij =

(

T
∑

t=pmax+1

ξ̂
(j)
t|T ξ̂

(i)
t−1|T

)−1
T
∑

t=pmax+1

ξ̂
(j)
t|T (39)

wherepmax is the maximum order of the AR models.
Consequently, the parametersθ(j) of the AR part related

to regimej can be re-estimated by using a WLS formulation.
It is indeed possible since the probabilities of being in such
or such regime at any timet are known. They are given by
the sequence of smoothed probabilities{ξ̂t|T }. In the WLS
formulation, each observation is weighted by the smoothed
probability of being in that regime.

For that purpose, arrange the smoothed probabilities re-
lated to regimej in a weight matrixΣj (of dimensionT×T ),
for which thetth element on the diagonal corresponds to the
smoothed probability of regimej at timet, that is,

Σj = diag
(

ξ̂
(j)
1|T , . . . , ξ̂

(j)
T |T

)

(40)

Then, for each regimej, an estimate of the AR parameters
θ(j) can be computed by solving the usual equation for WLS
estimation

θ̂
(j)

= (x̃⊤
j Σjx̃j)

−1x̃⊤
j Σjyj (41)

where

x̃j =







x1,j
⊤

...
xT,j

⊤






, and yj =







ypj+1

...
yT






(42)

Finally, updating the varianceσj
2 in regimej can be read-

ily done with

σ̂j
2 =

1

µj(T−(2+pmax))

T
∑

t=1+pmax

(

yt − xt,j
⊤θ̂(j)

)2

ξ̂
(j)
t|T

(43)

that is, by summing overt the squared residuals of the AR
model related to regimej, weighted by the smoothed proba-
bility of being in regimej at timet, and normalizing byµj

the sum of the smoothed probabilities for this regime.
The EM algorithm starts from an initial value forξ̂1|0. It

is chosen to set each element ofξ̂1|0 to equal probability, i.e.

ξ̂
(j)
1|0 = R−1, ∀j. An alternative would be to integrate the

initial value estimation in the likelihood maximization prob-
lem [17]. Finally, the initial transition probabilities gathered
in P, as well as the initial variances and AR parameters, are
derived after inspection of the dataset.

3.3 Forecasting with MSAR

At time t − 1, producing a one-step ahead forecast with
MSAR models consists in determining the conditional ex-
pectation ofyt given the information setΩt−1 and the model
parametersΘm. For that purpose, one first needs to predict
the probabilities to be in such or such regime at timet with

ξ̂t|t−1 = P̂⊤ξ̂t−1|t−1 (44)

whereP̂ is the transition matrix estimated over the training
set, and̂ξt−1|t−1 gathers the probabilities of being in such
or such regime at timet − 1 (cf. definition (34)). Then, the
one-step ahead prediction for the stochastic process itself is
calculated as

ŷt|t−1 = E(yt|Ωt−1, Θ̂m) = Â⊤
t ξ̂t|t−1 (45)

i.e. as the weighted sum of the AR forecasts for every regime
(Ât), the weights being given by the probabilities of being in
these regimes.

4 Results from offshore case studies

The models presented above are used for describing the fluc-
tuations of offshore wind generation on two real-world case
studies. The exercise consists in one-step ahead forecasting
of time-series of wind power production. The data for these
two offshore wind farms are firstly described. Then, the con-
figuration of the various models and the setup of estimation
methods are given. Finally, a collection of results is shown
and commented.

4.1 Case studies

The two offshore wind farms are Horns Rev (160MW) and
Nysted (165.5MW), located in Denmark, off the west coast
of Jutland and off the south cost of Zealand, respectively. The
annual energy yield for each of these wind farms is around



600GWh. They are the two largest offshore wind farms
worldwide today.

The raw power data consist in one-second measurements
for each wind turbine. Following Sørensen et al [4], it has
been chosen to model each wind farm as a single wind tur-
bine, the production of which consists in the average of the
power generated by all the available wind turbines. These
turbines are of nominal capacity 2000 kW and 2300 kW for
Horns Rev and Nysted, respectively. A sampling procedure
has been developed for obtaining time-series of 1, 5, and 10-
minute power averages. These sampling rates are selected
so that the very fast fluctuations related to the turbulent na-
ture of the wind disappear and reveal slower fluctuations at
the minute scale. Because there may be some erroneous or
suspicious data in the raw measurements, it has been consid-
ered that a minimum of 75% of the raw measurement within
a time interval needed to be available so that the related av-
erage is seen as valid. At Horns Rev, the available raw data
are from 16th February 2005 to 25th January 2006. And, for
Nysted, these data have been gathered for the period ranging
from 1st January to 30th September 2005.

The time-series have been splitted into learning and testing
sets. The former serves for the fitting of statistical models
while the latter allow us to appraise what the performance of
these models may be in operational conditions. Sufficiently
long periods without any invalid data are identified in orderto
define the necessary datasets. For Horns Rev, the training set
relates to September 2005. The testing set is composed by 19
periods whose lengths are between 2 and 16 days, identified
in the remaining of the whole dataset. Regarding Nysted, the
training set corresponds to the period from the 15th February
2005 to the 9th March 2005, while the test set gathers 14 pe-
riods of length 6-27 days from the rest of the available data.

4.2 Models, estimation setup and evaluation
criteria

The various time-series are modelled with the linear ARMA
and regime-switching SETAR, STAR and MSAR models.
The order of the AR and MA parts are chosen to vary be-
tween 1 and 5. This yields 25 competing ARMA models.

The optimal threshold values for SETAR and STAR mod-
els are determined from the nonlinear optimization proce-
dures described in Paragraphs2.2 and2.3. The lag param-
eterd is chosen to be 1. We impose the number of regimes
to be R = 3. Our choice for 3 regimes is motivated by
the influence of the wind-to-power conversion function on
the variance of wind generation: this variance is lower in
the low and high power range, while it is much larger in
the steep slope part of the power curve [18]. Thresholds
are initialized by considering various combinations of lower
and higher threshold values. The lower ones are picked
in the set{200, 500, 800} for both wind farms, while the
higher ones are picked in the sets{1300, 1600, 1900} and
{1500, 1800, 2100} for Horns Rev and Nysted, respectively.
This yields 9 combinations of initial threshold values for each
wind farm. For the particular case of STAR models, we fix
the shape of the logistic functions by setting the slope param-
eterγ to 1. There are then 1125 competing models in each of

the SETAR and STAR model families.
The initialization of the EM algorithm for the case of

MSAR models consists in picking an initial transition matrix
P, as well as initial AR parts, by specifying their parameters
and their variances, such that the resulting MSAR model is
stationary. A stationary MSAR model is defined as a MSAR
model whose AR part in each regime is stationary (cf. the
definition of a stationary AR model given in [5]). The ap-
proach chosen here is to impose the transition matrix and the
variances of the AR parts, while having the set of AR param-
eters varying. The initialP andσ are

P =





0.8 0.1 0.1
0.1 0.8 0.1
0.1 0.1 0.8



 , and σ =





40
40
40



 (46)

The initial parameters of the AR parts are chosen
to take point of departure in the simple three regime
MSAR(3; 1, 1, 1) model with

(

θ(1)⊤, θ(2)⊤, θ(3)⊤
)

= (1, 0.7, 50, 0.9, 100, 0.9) (47)

Then, when increasing the order of one of the AR part, the
new AR parameter to be initialized is given by a randomly
chosen real number. The stationarity of the resulting MSAR
model is verified. If this model is not stationary, another ran-
dom number is drawn. This procedure is repeated until a
stationary MSAR model is obtained. For each order of the
MSAR model, we consider 10 different initial parameter sets
yielding a stationary model. This raises the number of com-
peting MSAR models to 1250.

Either with the ML estimation method and a Gaussian as-
sumption on the residual distributions, or with the MMSE
estimation method, the parameters of the models are deter-
mined with the aim of minimizing a quadratic error criterion.
Therefore, in order to be consistent with the way parameters
are estimated, models are also evaluated with a quadratic cri-
terion on the testing set. More precisely, from the large panel
of error measures available for evaluating wind power pre-
dictions [19], the Root Mean Square Error (RMSE) criterion
is chosen.

4.3 Results and discussion

Table1 lists the best models of each class — best in terms of
a minimum RMSE on the testing set — for the time-series re-
lated to the Nysted wind farm. For instance for the 1-minute
averaged data, the best of the 25 competing ARMA models
has been found to be the ARMA(5,4). In addition, models
are ranked from minimum to maximum RMSE. Table1 also
gives the characteristics of the optimal SETAR and STAR
models, i.e. the thresholds that were determined from the op-
timization procedure. Note that for the 5 and 10-minute av-
eraged data, the thresholds related to the lower regime for the
SETAR models are very low (equal to 2.2 and 6 kW, respec-
tively), thus isolating the no-production cases as a regimeit-
self.

Whatever the sampling rate, the ARMA, SETAR and
STAR models have a similar level of performance, while the



Table 1: Performance evaluation for the various models for Nysted. Results
are for the 3 time-series averaged at different rates. The left column gives
the optimal model of each class. The optimal threshold values for SETAR
models (r) and STAR models (c) are also given. The models are ranked as
a function of their RMSE on the testing set.

(a) 1-minute averaged data

Model RMSE [kW] r [kW] c [kW]
MSAR(3;4,4,3) 13.3 – –
STAR(3;5,5,5) 16.1 – (920.9, 2096.6)
SETAR(3;4,4,4) 16.5 (203.6, 2006.3) –
ARMA(5,4) 16.5 – –

(b) 5-minute averaged data

Model RMSE [kW] r [kW] c [kW]
MSAR(3;4,5,5) 35.5 – –
STAR(3;5,5,5) 48.9 – (827.3, 1638.7)
ARMA(4,5) 50.8 – –
SETAR(3;1,3,3) 50.9 (2.2, 2149.8) –

(c) 10-minute averaged data

Model RMSE [kW] r [kW] c [kW]
MSAR(3;2,4,4) 60.6 – –
STAR(3;5,5,5) 86.2 – (579.4, 1545.4)
SETAR(3;3,5,5) 88.6 (6.0, 1595.4) –
ARMA(5,1) 88.9 – –

RMSE for the MSAR models is much lower. The improve-
ment obtained with the Markov-switching models with re-
spect to the three other types of models ranges from 19%
to 32% depending on the sampling rate. Then, STAR mod-
els have an advantage versus the two others since the best
STAR model is ranked second in all cases. The performance
of the SETAR and ARMA models are a lot alike. It appears
that considering separate regimes does not give any improve-
ment against the classical linear models unless the switches
between regimes are smoothed and controlled by some tran-
sition function. And, the hypothesis of some succession of
regimes that could be captured with a first order Markov
chain is validated by these results.

The testing set for Nysted is composed by 14 periods of
different lengths and with different characteristics e.g.vari-
ous mean production levels. The detail of the performance of
the various models is shown in Fig.3, which gives the RMSE
of the models listed in the above Table for each period. There
are only few periods for which the level of performance of
the MSAR is worse than that of the other models. In general,
the performance of all models is similar from one period to
the other, and it does not seem that certain type of conditions
would advantage such or such type of model. Also, by notic-
ing that the curves for ARMA, SETAR and STAR models lie
on top of each other whatever the period, one understands
that modelling the regime-switching with a lagged value of
measured wind power output does not yield a more dynamic
modelling of the power fluctuations.

The same type of exercise is carried out for the Horns Rev
case study. Table2 gives the sorted list of the best models
of each category for the three sampling rates, as well as their
characteristics.1 The thresholds of the SETAR model for the

1The upper threshold for the optimal SETAR model has converged to
the nominal power value, indicating that this optimal modelis indeed a SE-
TAR(2;3,3) model.

5-minute averaged data, and those of the STAR model for
the 10-minute sample data, are very close, showing that we
almost converged towards two-regime models. The number
of regimes has been imposed here, based on the knowledge
of the effects of the non-linear and bounded power curve on
power fluctuations. However, the number of regimes could
also be considered as a model parameter to be optimized in
the future, in order to see its influence on the resulting model
performance.

Table 2: Performance evaluation for the various models for Horns Rev. Re-
sults are for the 3 time-series averaged at different rates.The left column
gives the optimal model of each class. The optimal thresholdvalues for SE-
TAR models (r) and STAR models (c) are also given. The models are ranked
as a function of their RMSE on the testing set.

(a) 1-minute averaged data

Model RMSE [kW] r [kW] c [kW]
MSAR(3;3,2,5) 16.1 – –
STAR(3;5,5,5) 20.1 – (505.5, 1824.2)
SETAR(3;4,4,4) 20.4 (432.2, 1824.3) –
ARMA(2,1) 20.6 – –

(b) 5-minute averaged data

Model RMSE [kW] r [kW] c [kW]
MSAR(3;3,1,5) 45.0 – –
STAR(3;5,5,5) 63.3 – (892.9, 1673.0)
SETAR(3;3,2,3) 65.1 (744.4, 760.6) –
ARMA(2,2) 65.3 – –

(c) 10-minute averaged data

Model RMSE [kW] r [kW] c [kW]
MSAR(3;3,2,4) 68.1 – –
STAR(3;5,4,5) 96.9 – (705.0, 779.9)
SETAR(3;3,3,1) 99.8 (240.2, 2300) –
ARMA(5,2) 99.9 – –

Again, the STAR models have a slight advantage against
the SETAR models, and these latter ones are also slightly
better than linear ARMA models. But, they are significantly
outperformed by the MSAR models, whatever the sampling
rate. Indeed, the improvement proposed by this class of mod-
els with respect to the others ranges between 20 and 32%.
This confirms once again the interest of considering a hidden
Markov chain for modelling the regime-switching. In paral-
lel, note that both for the Nysted and Horns Rev test cases,
the average level of RMSE increases as the sampling rate gets
larger. The persistent nature of wind generation makes that
actual wind power output can be more easily modelled from
recent power measures when the lead time is shorter. In ad-
dition, the average level of RMSE is significantly larger for
Horns Rev than for Nysted, and this whatever the sampling
rate. Since the estimated models are globally unbiased, this
reveals that the variance of the model residuals is higher for
the former wind farm, and hence that the random part of the
fluctuations have a larger magnitude. This is certainly due to
a more turbulent wind at Horns Rev.

The performance of the various models listed in Table2
are detailed in Fig.4 for the 19 periods composing the Horns
Rev testing set. Those performance are more variable than
for the previous test case. However, MSAR models are still
significantly better than the other models for almost all pe-
riods, except for periods number 15 and 17. A particularity



Figure 3: The RMSE on all test data sets from Nysted for each model. Top: 1 minute. Middle: 5 minute. Bottom: 10 minute.

of these two periods is that they consist in fast successions
of drops and increases of wind power output. One may think
that in these specific periods the SETAR and STAR models
may be more appropriate since they have different AR parts
depending on the level of power output, while it is not the
case for MSAR and ARMA models. Though, since SETAR
and STAR models do not exhibit a more significant improve-
ment with respect to ARMA models for these two periods,
this reveals that the regime-switching based on lagged values
of power output does not have a higher value in these situa-
tions. Therefore, the poorer performance of MSAR models
over periods 15 and 17 may simply be explained by the fact
that the probabilistic inference of the regime-sequence was
not very representative over these periods, owing to some
more seldom meteorological phenomena.

5 Concluding remarks

Particular attention has to be given to the modelling of the
fluctuations of offshore wind generation, since dedicated
models are needed for enhancing the existing control and en-
ergy management strategies at offshore wind parks. This is-
sue has been addressed by applying chosen statistical mod-
els. The choice for regime-switching approaches has been
motivated by the succession of periods with fluctuations of
lower and larger magnitudes that can be easily noticed when
inspecting time-series of offshore wind power production av-
eraged at a minute rate.

Two different types of regime-switching approaches have
been applied. On the one hand, SETAR and STAR models
rely on explicit rules for determining what the current regime
is. It is in practice given by some function of past values of

measured power. On the other hand, MSAR models are based
on the idea that the regime-switching is governed by a hidden
Markov process. This, from a theoretical point of view, may
allow one to capture some complex influence of meteorolog-
ical conditions on the wind power fluctuations. For verifying
this (a priori) nice feature of MSAR models, they have been
compared to SETAR, STAR and ARMA models on a one-
step ahead forecasting exercise, with the aim of minimizing
a quadratic error criterion. In all cases, it has been found that
MSAR models significantly outperform the other ones: the
error reduction ranges between 19 and 32% depending on the
test case and the sampling rate. The gain of applying SETAR
or STAR models instead of simple linear ARMA models does
exist, but is relatively small. MSAR models indeed manage
to capture the influence of some complex meteorological fea-
tures on the power fluctuations. It will be of particular inter-
est to study the relation between the temporal evolution of
some meteorological variables and the regime sequences of
MSAR models in order to determine which of these variables
have a direct impact on the magnitude of power fluctuations.
Integrating this knowledge in existing forecasting methods
will permit to significantly increase their skill for the specific
case of very short-term prediction (from some minutes to few
hours) at offshore sites.

The results obtained with Markov-switching approaches
encourage further investigation. The AR part in each regime
could be extended to Generalized AutoRegressive with Con-
ditional Heteroskedasticity (GARCH) models. Alternatively,
we may propose to use AR models whose parameters are
conditional to the level of the predictand. In such a case, the
Gaussian assumption must be rethought, since conditional
distributions of wind generation given the level of power out-
put are not Gaussian. If a parametric assumption is to be



Figure 4: The RMSE on all test data sets from Horns Rev for eachmodel. Top: 1 minute. Middle: 5 minute. Bottom: 10 minute.

made, aβ-distribution assumption is much more suitable.
The development and application of conditionalβ-MSAR
models will be the focus of further research works. Finally,
as wind generation is a non-stationary process it would be
appropriate to have models with time-varying parameters.

Broader perspectives regarding follow-up studies include
the development of stochastic models for simulating the in-
teraction of offshore wind generation with conventional gen-
eration or storage, used as a backup for smoothing the fast
power fluctuations at offshore wind farms. Better control
strategies will result from the application of these models,
which will significantly reduce the potential large costs in-
duced by unwanted large power fluctuations.
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