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Abstract—In market conditions where program responsible parties ae
penalized for deviations from proposed bids, energy storag can be used
for compensating the energy imbalances induced by limited redictability
of wind power. The energy storage capacity necessary for pfarming this
task will differ between delivery periods, according to themagnitude and
the evolution of forecast errors in each delivery period. A nethodology is
presented for the assessment of the necessary storage capafor each
delivery period, based on the degree of risk that the power pwducer
accepts to be exposed to. This approach leads to a dynamic assment
of the energy storage capacity for different delivery perials. In such
a context, energy storage is used as a means of risk hedgingadust
penalties from the regulation market. The application of the algorithm
on real data (both measurements and forecasts) of the yearlgutput of
a wind farm shows that the application of a dynamic daily sizhg of the
necessary storage leads to a significant reduction of the séme capacity
used, without affecting the producer’s profit significantly. The method
proposed here may provide the basis for the introduction of ®rage
as an independent market entity, where each producer may renthe
necessary daily storage capacity for hedging the risk of thevind power
limited predictability.

Index Terms—wind power, storage, electricity markets, forecast, un-
certainty, scenarios

|I. INTRODUCTION

The increased participation of wind power in electricity rkeds
leads to the management of energy portfolios under highesrteinty
due to the limited predictability of wind power productioarfthe
time-scales involved. Information about the expected qrardnce
of state-of-the-art prediction methods is available in ¢l When

forecast errors. This last point is unfortunately often aygpropriately
considered in studies focusing on wind/ESS operation anihgsi
e.g. [6]. In parallel, assumptions on probabilistic dtmitions of
potential wind power generation (like Gaussianity for amgte in
[4]) are highly unrealistic even though attractive in terofigseducing
problem complexity. Not appropriately accounting for ta@spects
may lead to erroneous results, and underestimation of sa&ges
storage capacity.

In this paper, statistical scenario forecasts of shortevind
power production, representing both the potential desesti be-
tween forecasts and actual power production, and the eatioel
pattern of prediction errors, are used as a basis. Thosearszen
forecasts are generated following the method recentlyribest in
[8]. A generic methodology is presented for deciding upoe th
energy storage capacity that may be needed for hedging tapera
uncertainty induced by the wind power forecasts employatthS
hedging strategy involves a risk parametercorresponding to the
risk for the combined wind/EES system of not being able tdilful
the contract made on the day-ahead market. The central $d&a i
dynamically allocate the necessary storage capacity. Basethe
scenario forecasts, the power producer can decide uponntrgye
storage capacity necessary for the following delivery gutrieading
to an overall reduction of the needed storage, without sewepact
on the revenues. Simplifications are made here about thagstor
model employed, or about the market information that woddised
in real-world application, since we only aim at presenting tore of

participating in electricity pools, this uncertainty isamslated into the methodology. This methodology is indeed generic: theadyic
revenue loss for the wind power producer, induced by reigmat Storage assessment corresponds to the first applicationdreeries

costs. A possible countermeasure for compensating thesedas
to use electrical energy storage (EES) as a buffer for abspithe
imbalances, by storing the surplus of energy and using iteifiods
of deficit. The issue of optimal sizing, optimal operation,value of
storage to be used in combination with wind power generatias
inspired a number of recent studies in the literature, F{T].

of different tasks in the energy portfolio management thaty rhe
redefined accordingly, like reserve allocation, unit cotnmeint, etc.
In a first stage, the basics concerning imbalance managament
market environment are discussed in Section Il. The roldefEES
is then investigated in Section lll. In Section IV the metblogdy
for the dynamic sizing assessment of the EES is presentkolyéal

The key issue for deciding on an optimal operation of a combin Py an example application for the operation of a wind farmha t

wind/EES plant, or for the sizing of the storage device ftsgto have
access to a realistic representation of wind power foragastrtainty.
In a general manner, such representation must includeniafibon on
the probabilistic distribution of potential generatiorr feach look-
ahead time, as well as information on the correlation stnecof
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case study of Section V. The paper ends with concluding resriar
Section VI, along with perspectives for future work.

II. IMBALANCE MANAGEMENT IN A MARKET ENVIRONMENT

In deregulated electricity markets (e.g. the ScandinaMard Pool
market or the Dutch power exchange APX) power producersatiibp
their production by proposing quantity-price energy bidsadvance
in the day-ahead (spot) market over the following delivesyiqd for
each unit of time (Program Time Unit, abbreviated PTU). lawi
of the time-scales involved, a market participant with atfotio
including a significant share of wind power must base his bid o
wind power production forecasts with horizons ranging frbsnto 37
hours ahead. It is known that forecasts for such look-ahieael have
a highly variable level of accuracy, which is also quite lowaverage,

(email: see [9], [10]. Since market participants are charged fordewation

from contract, information on the situation-dependenteutainty of
he forecasts provided prove to be paramount. The bids ouldie
ahead market are all matched through a single auction @mdoes
determining the market clearing price (spot price) and tregmm



of the participants for each PTU. The real-time balance betw Pv PO
generation and load is performed through the regulationketar

managed by the Transmission System Operator (TSO). Regulat WTG
of positive and negative imbalances translates to pesaftie the

market participants, defined as the volume of electricityribalance P 5 $ ? Pd b
times the imbalance price. These imbalance prices arereliffe ¢ ¢

for positive and negative imbalances, and highly variabkipng a PC
function of the power volume that needs to be regulated djipia

the system, supposed to reflect the production (or curtaiiposts, EES
and including a premium for readiness [11]. As a consequiamsech
market environment, the profit of the power producer is defias
the revenue obtained from the day-ahead market minus thetigsn Fig. 1. The combined wind/EES power plant.
resulting from imbalance regulation costs (see revenumdtation
ine.g. [12]).

In order to maximize his profits, the power producer shoukht
minimize the imbalance costs by more efficient bidding cstirsj There may be different views of what the optimal operatioraof
of minimizing the cost of power imbalances. These efficiedtling wind/ESS power plant in a market environment is. If havinystem
strategies should be based on wind power forecasts andriafam point of view, one may be concerned with maximizing the olera
on their uncertainty, along with information on regulationit costs penetration of wind power [2], or one may alternatively aouo
[12]-[14]. When the energy portfolio consists of multipleits, the for constraints related to frequency/voltage issues []bding a
power producer can minimize the power imbalances in each BTU participant in a deregulated electricity market with thdyoaim of
considering curtailment of the wind power production (oduetion benefit maximization, one may envisage that storage will dedu
of the output of conventional generation means) in the chserplus, for arbitrage, i.e. for taking advantage of the daily vaoas in
or inversely use conventional units as backup on idle or olmged the spot market prices by shifting quantities of energy frimw
power in the case of deficiency. This however unavoidablyldeaprice periods to high price periods [16], [17]. In this cotifethe
to lower unit utilization, lower efficiencies and conseciemigher operational strategy may be obtained as an internal partlafger
emissions. Another alternative here is the use of largieSERS as linear optimization algorithm, where the objective fuodtiis the
a buffer for absorbing the fluctuations around the delivesgtiact maximization of the daily profit by shifting power generatioetween
proposed on the day-ahead market, by storing surplus ofygrserd different time periods.
using it in periods of deficit. The key question here is therapen,

h B. EES operation under different market conditions

size and type of EES necessary for performing this task. 0'6’_Pb 7N
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I1l. ROLE OF EES:OPERATION, TYPES AND SIZING ISSUES o.4-_p:h
P AN
A. Basic EES modeling principles o3 _ o™
The combined wind/EES power plant is presented in Fig. 1. The ; 0.2 — Poev /

wind power production of the wind power plant is denotedPas A § ol et
part of this power can be curtailed() or be used for charging the < F=
EES (P.x). Furthermore, additional power can be delivered by the ===
discharging of the EESH;.x). The output power of the combined sl
plant P, can thus be written by the power balance equation
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with the terminal power of the EES being denoted Rsgs. The time [h]
energy content of the EES (denoted &% generally evolves as a

function of the terminal power and a loss function due to Fig. 2. Daily operation of the combined wind/EES power plant

E = Ppps(t) — Pr (Pers, B,t), @) However, in electricity markets where wind power produdease
to pay for their deviations from contract, one may then adesi

where in the time discrete case, the above equation reads that the EES operation is actually determined by the signhef t
imbalances and the energy content limits. |.e., when thelamte is

%]f = Prgs — Pr (Pegs, E, At). (38) positive and there is spare capacity, the EES is charged deth w

negative and there is spare energy content in the EES, the EES
The constraints related to the operation and simulatioh@tom- is discharged. In such a case, this market participant isgryo
bined wind/EES power plant consist of the output power Emihe maximize his revenue by minimizing the potential regulatmosts
physical limits to energy storage operation (maximum andimmuim  induced by the deviations from contract. This is the sitrative
energy contents), and numerical limits related to the fitiitee step concentrate on in the present paper. Fig. 2 presents thatapeof
At in a time discrete simulation. For a detailed discussiontos t the combined wind/EES plant in such a market environmentnwhe
topic, see [15]. the curtailment option is not present. It is observed that HES
manages to fix the power output to the bidding sched#lg @p to

IReactive power is neglected in this analysis, but can ehsilpcorporated hour 21, when the EES is empty and negative imbalances centin
when considering possible ancillary services deliveredheycombined plant. One can also notice that the storage actually acts as amatmegver



the energy imbalances for consequent PTUs under the olgeati
minimizing the regulation costs. In such a context, the niraflmence
on the EES operational strategy derives solely from thecehof the
bidding strategy. This strategy should be determined asmtagral
part of a general stochastic optimization where the EESatioer is
incorporated in the trading principles introduced in [12].

C. The EES sizing issue: principles of dynamic sizing

and temporal development through the interdependencetsteuof
forecast errors. Considering independent normal didtahe for the
modeling of forecast errors for the different horizons ahea in
[16], [18] for instance is not appropriate. Such approactiesnot
take into account neither the probabilistic informationtbe forecast
uncertainty nor the interdependence structure of foresasts with
a given forecast series. In the present paper, a method tiecen
presented by the authors in [8] is used, allowing for the gaien of
scenario forecasts of wind power production that complyhvbidth

As mentioned above, the EES operates as an integrator ower IIE'quirements.

energy imbalances. Therefore, the EES capacity that isseapefor
absorbing the energy fluctuations is determined from boghntlag-

nitude and the sequence of the imbalances. Consequentaincesl

of different signs are counterbalanced by the EES withoetrtbed
for extra capacity. To illustrate this, an example of therapen of
an EES device for two different imbalance patterns is preskin
Fig. 3. In both cases, the energy deviations take the sanes/&br

IV. METHODOLOGY FOREESDYNAMIC SIZING
A. Scenario forecasts of wind power production

Owing to the limited predictability of wind generation anhbet
highly variable level of accuracy of point forecasts of wipower,
information about the situation-dependent uncertaintgudh fore-

the total period (5 occurrences of +1 p.u. and 5 occurrented o casts is paramount [10]. The most promising manner of domng s

p.u.) but in the two cases the sequence of the events isdtiffein
the first case all deviations with the same sign occur conisety
while in the second the sign of the deviations is changeddh €3U.

to generate probabilistic forecasts of wind power, eitlemf purely
statistical methods (see e.g. [19]), or by conversion ofestide
forecasts of meteorological variables to ensemble foteaafswind

As can be easily observed, the sequence of deviations hagoa maower [20], [21]. Probabilistic forecasts give the comelptobability

effect on the necessary EES capacity; in the first case a itampdc
5 p.u. is necessary, while in the second 1 p.u. is enough.
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Fig. 3. Example of EES operation for 2 different sequencesnafalances.

This simple example shows how one may calculate the negess ¥

storage capacity when the actual energy production for &3idd
is known. However, at the time of bidding this informationriet
available. Instead, the power producer may possess infaman
the forecast uncertainty. Using this information, it canpiossible to
assess a set of scenarios corresponding to all possible$ufior the

wind power development. Based on these scenarios, the sages

storage capacity may be evaluated. Each scenario howellgield
a different energy capacity. The set of possible energydaiags will
correspond to a probability distribution which may be usgdtle
energy producer to decide upon the necessary storage tajsince
the forecast uncertainty varies between different defiymriods, the
necessary capacity will not be fixed, but will deviate fromegreriod
to the other. Therefore, if the power producer may assesotheast
uncertainty in a form of possible wind power scenarios far tiext
delivery period, then it is possible to decide upon the oglistorage
size necessary for minimizing imbalances.

The assessment of forecast uncertainty will play a cential for
the definition of the EES capacities. As presented in the pi@in
Fig. 3, one should accurately model both the forecast eregmnitude

distribution of potential wind power production for eaclokeahead
time, commonly up to 48-72 hours ahead.

A drawback of probabilistic forecasts is that they are posdu
independently for each look-ahead time. Thus, they do rfotrimon
the development of the prediction errors through predicseries,
since they neglect their interdependence structure. Astitited and
explained above, this information is of particular impoxa for
many time-dependent and multistage decision-making pesse such
as the operation of a wind/EES system. In order to satisfg thi
additional requirement, one needs to generate scenar&isoofterm
wind power production. This can be done with the method desdr
in [8]. The resulting scenario forecasts respect the (n@matric)
probabilistic forecasts for the next period, and also redytlee most
recent information about the interdependence structugrediction
errors. Monte-Carlo simulation is further used for the gatien
of the scenarios. The problem is defined as the sampling from
a multidimensional distribution with arbitrary marginagmd can
be treated using the techniques presented in [22], basedch®n t
transformation of the marginals between different domairisst
a multivariate Normal distribution is used for generatingset of
Gaussian variables realizations that are correlated diceptto the
& timated interdependence structure and then these @auwasiables
realizations are transformed to the desired marginals. &idepicts
an example with the commonly provided point forecasts ofdwin
generation, corresponding probabilistic forecasts, dt agea set of
25 scenarios forecasts for a period of 43 hours ahead. Thinge
is for the case of a multi-MW wind farm in Denmark.

B. EES dynamic sizing

Based on the above methodology, a number of scenario fasecas
are generated, corresponding to the possible futures efititepower
production. Since the methodology for generation of sderfare-
casts is not computationally expensive, a large number @fisios
can be generated and subsequently employed for decisikimgna
For each of these scenarios, the combined wind/EES plamaipe
can be assessed. This operation is defined by the biddinggtra
the storage size, the charging/discharging power limits the EES
energy content in the beginning of the delivery period.

Let us assume that a market participant directly bids theigea
point forecasts of wind generation on the day-ahead markéig. 5,
the result of the possible scenarios for the EES energy nbifibe



energy content EES [p.u]

time [h]
(a) Time plot

(b) Histogram
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the day-ahead operation of the wind/EES power plant is showhhe different scenario forecasts lead to different daiperation

Fig. 5. Assessment of the day-ahead potentially necesda8/ dhergy contents.



of the EES, thus to different potentially required EES cétggz  The charging and discharging efficiencies are further clamed as
By gathering the information in a histogram, one may es@matqual., = n4cn, and the functiorP;, from equation 2 is assumed to
the probability distribution of the necessary EES energptent. be of first ordef. Both maximum hydro generation and pump nominal
For instance in Fig. 5(b) is given the energy content distidm capacity are considered @5% of the wind park installed capacity.
corresponding to the EES operation of Fig. 5(a). For thiccifipe The cost of charging the EES.{) corresponds to the internal cost

case, it appears that with an EES capacity of 4.82 p.u. th&eanarof the pumping operation and is taken as equal teEIVBVh®.

participant producer can be 100% sure that the power imbasafor
the next delivery period are minimized. A lower EES capaeituld
translate into a risk of not having enough EES capacity ffillfthis
task. This risk can be quantified by a parametermeaning that

there is a risk ofa% of not covering potential imbalances with the

storage device. Inversely, this risk can be quantified ifidlag on
a certain storage capacity. In Fig. 5(b) we can see the EE&citgp
that corresponds to different quantiles of the distributioamely the
95% and 99% quantiles, corresponding to risk parameteresabi
a = 5% anda = 1%, respectively.

In this point lies the core of the present contribution. \gsthe
information on the wind power uncertainty for the next detiv

period, the power producer may decide upon the necessary EES

capacity based on the level of risk exposure, translatedargpecific
quantile of this distribution. For example, if a market papant

decides upon a risk hedging 85% (thus fora = 5%), the necessary
energy content will correspond to the 95% quantile of therggne

content distribution (Fig. 5(b)). Since the forecast utaiaty will

differ among different delivery periods, so will the necaysstorage
capacity. Using the proposed technique, the power prodoey
dynamically allocate the necessary storage capacity basethe
desired risk exposure. In such a context, storage could Visagyed
as a service that could be contracted by the market panitifoa
hedging his portfolio against regulation costs.

V. CASE STUDY

70

—— Spot price
Cost upregulation
Cost downregulation
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ol . 1 1
8 10

f2 1'4
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Fig. 6. Profile of spot prices and regulation costs used instody, based
on yearly averages.

The size of the EES is defined dynamically based on the piegip
presented in Section IV-B. Possible remaining energy irréiservoir
after each delivery period (1 day) is transferred to the oee. The
operation of the combined wind/hydro plant for a total péraf 1
year is simulated. The combined plant is considered to tpénaa

The case of a Danish multi-MW wind farm is used as a basis.tPofiypical electricity pool. It is considered as a first simpéese that the

forecasts result from the application of the Wind Power Riteih
Tool (WPPT) method [23], which uses meteorological predict of
wind speed and direction as input, as well as historical oreasents
of power production. All power predictions and measuresjctvh
are normalized by the wind farm nominal capaciB,, cover a
period of one year. Hourly updated point predictions havéaurly
resolution (similar to measurements) up to 43 hours aheaén,T
nonparametric probabilistic forecasts are produced witk-tadaptive
quantile regression [19]. Predictive distributions argegi by 19
quantile forecasts whose nominal proportions range frob Qo
0.95 with a 0.05 increment. From a probabilistic point ofwjie
since it is not possible to exclude any possibility, evenutito
extreme prediction errors might happen, the very tails edjutive
distributions are modeled as exponential tails. An evanaof the
quality of probabilistic forecasts produced with this naeths given
in [24]. Fig. 4(a) gives an example of such probabilisticefmasts
of wind generation, in the form of a fan chart. In parallelg.F(b)
depicts a set of 25 scenarios of power production for the gzeried,
generated from the method of [8] (briefly introduced in Smttiv-A),
along with the traditionally provided point forecasts fetcoming
period. For the study performed in the following, the numioér
scenario forecasts to be generated for each period is sefGo
Remember that this number can easily be raised to sevenzaahds
for better uncertainty quantification.

The operation of a wind-hydro generation facility is inveated,
consisting of a hydroelectric power plant with an electréamerator,

market participant does not have access to advanced prieeafits,
and makes decisions based on climatologital forecastegmonding

to the average over the year. The corresponding spot pricsi@it
regulation costs used for the evaluation of the market diperare
depicted in Fig. 6. The unit cost for upregulation is consideas
50% of the spot price, while that for downregulation amounts to
60% of the spot price. These values are inspired by the analysis o
the Nord Pool market data performed in [25]. Note that thiglgt
may be easily extended to incorporate better informatiorpiices.
Also, the price uncertainty may be included in a second gstethe
decision making-process, so that the decision on the dynaizing
derives from an overall regulation cost hedging point ofwiglere,
prices are not used for decision-making, but more for itatstg how
the dynamic sizing of energy storage may impact the reguiatosts
for a given auction period or over a period of time.

In Fig. 7(a) the dynamic EES capacity assessment based on the
99% quantile (risk parameter = 1%) is presented. In particular, for
each day, an EES capacity is defined based oro®¥ gquantile of
the respective energy content distribution (see Fig. 5&5)expected,
the size of the necessary EES varies throughout the yeau loasthe
anticipated wind power forecast uncertainty. Using thisSERpacity

1for each day of operation, the system operation has beenaedu
In Fig. 7(b), the hourly time-series of actual energy cohtaenthe
dynamically sized EES is depicted over this same year ofabier.
One may then observe how this time-series are correlatdu thvét

2lt has been shown in [15] that constant efficiency assumgtiare of

a Wln.d par}( ’ Iowerr] and uppgr water dre_serv?fl_rs. and p;anitock alpmited practicability in realistic investigations, butilivbe used here for the
pumping pipes. The energetic round-trip efficiency of theSEE saye of simplicity. More advanced loss mechanisms may Heded in the
corresponding to the global hydraulic circuit efficiencyassumed to methodology and is the subject for future work.

bens = nen - nacn = 75% without contribution from standby losses. 3These settings for the hydro facility are obtained by relditerature [16].
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daily sizing of the EES. In parallel, Fig 8 summarizes thedgsgm of
the energy content for 1 year of operation correspondinggo®b).
For a large fraction of time, the energy storage is emptyrdhee two
reasons for that. On the one hand, the fact the storage is@mtely

dynamically sized does not mean that it has the optimal amofin

energy stored at the beginning of the delivery period. Fetaince,

if the methodology for a given day tells there is a need fogdar

storage capacity, but the storage is empty at the beginninipeo
delivery period, there will be not possibility of comperiagt for

negative imbalances. On the other hand, the effect of the IB&®s
is quite dramatic. Indeed, since the power bid correspondthe

point forecast, the positive and negative imbalances great&d to be
asymptotically equal. Therefore, one should expect the lBEPerate
as a buffer that levels out these imbalances. However, oswke
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EES dynamic capacity assessment based on the 99%ileesk parameter = 1%) and estimated energy content (1 year of operation).

his bid from the wind power point forecasts in order to engtiere
will be more energy stored than released, which in terms eftipe
and negative imbalances would result in even volumes.

In order to assess the economic feasibility of the methagplo
the operation of the combined wind/EES plant for the 1 year is
simulated, for 20 possibilities for EES sizin¢l) no storage,(2-

19) dynamic EES sizing based on the 17 quantiles rising from
15% to 95%, thus for risk parameters going from 5% till 85%,
with 5% increment, and th®@9% quantile @ = 1%, very low risk
exposure)(20) infinite storag&. Each of these scenarios corresponds
to a different strategy that the wind producer may follow fiedging
wind power forecast uncertainty. In Fig. 9(a), the totalfirimr the
producer and the regulation costs for each scenario arerpszs
Following the proposed methodology, the dynamic sizingtsty
according to a low risk exposure (low) ensures a profit that is
very close to the case of a dedicated infinite storage. As shaw
Fig. 9(a), employing higher values of the risk parametedirectly
lead to higher risk exposure, and resulting costs on imicakgrfinally
yielding a reduced overall revenue. For risk parameteregahetween
65% and 85% (thus relying on quantiles with proportions leetw
15% and 35% quantile) the storage size is so small that itafigtu
does not offer any profit. In Fig. 9(b) the respective maximamna
mean EES capacity for the operation of the system for eaatasice

is presented, calculated by the respective EES capacitgdch day
(see e.g. Fig. 7(a) for th@9% quantile scenario). One can see that
the maximum and mean EES capacity needed is reduced with the
decreasing quantiles, meaning that higher risk exposaegsl to a
reduced need for EES capacity.

VI. CONCLUSIONS- FUTURE WORK

In market conditions that do not favor wind power againsteoth
energy sources, electrical energy storage can be used fiimining
the imbalance costs due to the limited predictability of dvipower.
The storage size necessary for performing this task depemdbe

that the EES can only releage% of a positive imbalance previously forecast error for each delivery period. Since this erroiegbetween

stored. This lead to a frequent emptying of the storage devibe

amount of energy lost due to the EES losses is a critical patem

for the assessment of storage as discussed in detail inTh&tefore
ideally, a market participant using a wind/EES should sligreduce

4As infinite storage capacity the minimum capacity for hedgall wind
power forecast errors is considered, quantified based oarthlgsis presented
in Section IV-B as 12.08 p.u. Any storage capacity largentttdas will be
underused.
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Fig. 9. Profit/cost curves and EES max/mean energy conterthéodifferent dynamic sizing scenarios.

successive delivery periods, the necessary storage iseafsected the first application from a series of different tasks in thergy
to follow these variations. Therefore, the assignment aficked portfolio management that may be redefined accordinglg, iédserve
storage based on a worst-case scenario (e.g. over a on@amiad) allocation, economic dispatch, etc., based on a stochastiimization
will lead to a severe under-utilization of the installatidnstead, if paradigm.

storage is considered as a service in the energy market, peaatr

producer may rent the necessary capacity in each delivetipdoe

for minimizing power imbalances. Alternatively, one mayeughe
dynamic sizing methodology introduced here for sizingagergiven
an accepted risk exposure to regulation costs.

The assessment of expected forecast uncertainty for eatiorau
ing/delivery period is central for dynamic storage sizilge method-
ology presented in this contribution shows how this decisian be
made based on scenario forecasts derived from probabiistcasts
and the most recent information on the interdependencetsteu
of forecast errors for the set of forecast horizons of raieea By
assessing the combined wind/storage plant operation ff@oakible
scenario forecasts over the next delivery period, a digiob for the
necessary energy content may be obtained. When this ditstrib
is obtained, the power producer may decide upon the desiskd
exposure by choosing a storage capacity that corresporadsgecific
quantile of this distribution. Note than in the future, madvanced
information on expected regulation costs can be employethim
methodology, thus permitting to make more appropriatesiges on
the sizing depending upon volatility of regulation unit 0sOne
could then evisage desingning optimal trading strategiesunting
based on optimal use of storage capacity.
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This proposal dynamic sizing methodology may be used asia bas

for introducing energy storage as a market entity that isgimeg
the power producer against the risk due to the limited wind/gyo
predictability. The producer may estimate the necessanage size

(7]

and also decide on his risk exposure. The methodology can He]
used for assessing the profit and costs of implementing geora

Also, since the storage size is related to the forecast taingy, the
dynamic sizing of energy storage is a flexible approach twigated
improvement of forecast accuracy in the future. In marketddions
that favor wind, the same methodology may be used from thedfid
the system operator, for the assessment of the necessaryagg$or
securing the system operation due to the uncertainty in \wider
production. Finally, it should be mentioned that the metiogy
presented here is generic: dynamic storage sizing comespto

(9

(20]
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