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Dynamic Sizing of Energy Storage for Hedging Wind Power
Forecast Uncertainty
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Abstract—In market conditions where program responsible parties are
penalized for deviations from proposed bids, energy storage can be used
for compensating the energy imbalances induced by limited predictability
of wind power. The energy storage capacity necessary for performing this
task will differ between delivery periods, according to themagnitude and
the evolution of forecast errors in each delivery period. A methodology is
presented for the assessment of the necessary storage capacity for each
delivery period, based on the degree of risk that the power producer
accepts to be exposed to. This approach leads to a dynamic assessment
of the energy storage capacity for different delivery periods. In such
a context, energy storage is used as a means of risk hedging against
penalties from the regulation market. The application of the algorithm
on real data (both measurements and forecasts) of the yearlyoutput of
a wind farm shows that the application of a dynamic daily sizing of the
necessary storage leads to a significant reduction of the storage capacity
used, without affecting the producer’s profit significantly. The method
proposed here may provide the basis for the introduction of storage
as an independent market entity, where each producer may rent the
necessary daily storage capacity for hedging the risk of thewind power
limited predictability.

Index Terms—wind power, storage, electricity markets, forecast, un-
certainty, scenarios

I. I NTRODUCTION

The increased participation of wind power in electricity markets
leads to the management of energy portfolios under higher uncertainty
due to the limited predictability of wind power production for the
time-scales involved. Information about the expected performance
of state-of-the-art prediction methods is available in e.g. [1]. When
participating in electricity pools, this uncertainty is translated into
revenue loss for the wind power producer, induced by regulation
costs. A possible countermeasure for compensating these losses is
to use electrical energy storage (EES) as a buffer for absorbing the
imbalances, by storing the surplus of energy and using it in periods
of deficit. The issue of optimal sizing, optimal operation, or value of
storage to be used in combination with wind power generationhas
inspired a number of recent studies in the literature, e.g. [2]–[7].

The key issue for deciding on an optimal operation of a combined
wind/EES plant, or for the sizing of the storage device itself, is to have
access to a realistic representation of wind power forecastuncertainty.
In a general manner, such representation must include information on
the probabilistic distribution of potential generation for each look-
ahead time, as well as information on the correlation structure of
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B. Klöckl is with Verbund APG, Vienna, Austria (email:
bernd.kloeckl@verbund.at).

J. Verboomen is with Siemens AG, Erlangen, Germany (email:
jody.verboomen@siemens.com). At the time this work was carried out he
was with Electric Power Systems, Delft University of Technnology, The
Netherlands,

forecast errors. This last point is unfortunately often notappropriately
considered in studies focusing on wind/ESS operation and sizing,
e.g. [6]. In parallel, assumptions on probabilistic distributions of
potential wind power generation (like Gaussianity for instance in
[4]) are highly unrealistic even though attractive in termsof reducing
problem complexity. Not appropriately accounting for those aspects
may lead to erroneous results, and underestimation of necessary
storage capacity.

In this paper, statistical scenario forecasts of short-term wind
power production, representing both the potential deviations be-
tween forecasts and actual power production, and the correlation
pattern of prediction errors, are used as a basis. Those scenario
forecasts are generated following the method recently described in
[8]. A generic methodology is presented for deciding upon the
energy storage capacity that may be needed for hedging operational
uncertainty induced by the wind power forecasts employed. Such
hedging strategy involves a risk parameterα, corresponding to the
risk for the combined wind/EES system of not being able to fulfill
the contract made on the day-ahead market. The central idea is to
dynamically allocate the necessary storage capacity. Based on the
scenario forecasts, the power producer can decide upon the energy
storage capacity necessary for the following delivery period, leading
to an overall reduction of the needed storage, without severe impact
on the revenues. Simplifications are made here about the storage
model employed, or about the market information that would be used
in real-world application, since we only aim at presenting the core of
the methodology. This methodology is indeed generic: the dynamic
storage assessment corresponds to the first application from a series
of different tasks in the energy portfolio management that may be
redefined accordingly, like reserve allocation, unit commitment, etc.

In a first stage, the basics concerning imbalance managementin a
market environment are discussed in Section II. The role of the EES
is then investigated in Section III. In Section IV the methodology
for the dynamic sizing assessment of the EES is presented, followed
by an example application for the operation of a wind farm in the
case study of Section V. The paper ends with concluding remarks in
Section VI, along with perspectives for future work.

II. I MBALANCE MANAGEMENT IN A MARKET ENVIRONMENT

In deregulated electricity markets (e.g. the ScandinavianNord Pool
market or the Dutch power exchange APX) power producers dispatch
their production by proposing quantity-price energy bids in advance
in the day-ahead (spot) market over the following delivery period for
each unit of time (Program Time Unit, abbreviated PTU). In view
of the time-scales involved, a market participant with a portfolio
including a significant share of wind power must base his bid on
wind power production forecasts with horizons ranging from13 to 37
hours ahead. It is known that forecasts for such look-ahead time have
a highly variable level of accuracy, which is also quite low on average,
see [9], [10]. Since market participants are charged for anydeviation
from contract, information on the situation-dependent uncertainty of
the forecasts provided prove to be paramount. The bids on theday-
ahead market are all matched through a single auction process for
determining the market clearing price (spot price) and the program
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of the participants for each PTU. The real-time balance between
generation and load is performed through the regulation market,
managed by the Transmission System Operator (TSO). Regulation
of positive and negative imbalances translates to penalties for the
market participants, defined as the volume of electricity inimbalance
times the imbalance price. These imbalance prices are different
for positive and negative imbalances, and highly variable,being a
function of the power volume that needs to be regulated globally in
the system, supposed to reflect the production (or curtailment) costs,
and including a premium for readiness [11]. As a consequencein such
market environment, the profit of the power producer is defined as
the revenue obtained from the day-ahead market minus the penalties
resulting from imbalance regulation costs (see revenue formulation
in e.g. [12]).

In order to maximize his profits, the power producer should then
minimize the imbalance costs by more efficient bidding consisting
of minimizing the cost of power imbalances. These efficient bidding
strategies should be based on wind power forecasts and information
on their uncertainty, along with information on regulationunit costs
[12]–[14]. When the energy portfolio consists of multiple units, the
power producer can minimize the power imbalances in each PTUby
considering curtailment of the wind power production (or reduction
of the output of conventional generation means) in the case of surplus,
or inversely use conventional units as backup on idle or on reduced
power in the case of deficiency. This however unavoidably leads
to lower unit utilization, lower efficiencies and consequently higher
emissions. Another alternative here is the use of large-scale EES as
a buffer for absorbing the fluctuations around the delivery contract
proposed on the day-ahead market, by storing surplus of energy and
using it in periods of deficit. The key question here is the operation,
size and type of EES necessary for performing this task.

III. ROLE OF EES:OPERATION, TYPES AND SIZING ISSUES

A. Basic EES modeling principles

The combined wind/EES power plant is presented in Fig. 1. The
wind power production of the wind power plant is denoted asPv. A
part of this power can be curtailed (Pc) or be used for charging the
EES (Pch). Furthermore, additional power can be delivered by the
discharging of the EES (Pdch). The output power of the combined
plant Po can thus be written by the power balance equation1,

Po = Pv − Pc − PEES, (1)

with the terminal power of the EES being denoted asPEES . The
energy content of the EES (denoted asE) generally evolves as a
function of the terminal power and a loss function due to

Ė = PEES(t) − PL (PEES, E, t) , (2)

where in the time discrete case, the above equation reads

∆E

∆t
= PEES − PL (PEES, E, ∆t) . (3)

The constraints related to the operation and simulation of the com-
bined wind/EES power plant consist of the output power limits, the
physical limits to energy storage operation (maximum and minimum
energy contents), and numerical limits related to the finitetime step
∆t in a time discrete simulation. For a detailed discussion on this
topic, see [15].

1Reactive power is neglected in this analysis, but can easilybe incorporated
when considering possible ancillary services delivered bythe combined plant.

Fig. 1. The combined wind/EES power plant.

B. EES operation under different market conditions

There may be different views of what the optimal operation ofa
wind/ESS power plant in a market environment is. If having a system
point of view, one may be concerned with maximizing the overall
penetration of wind power [2], or one may alternatively account
for constraints related to frequency/voltage issues [7]. If being a
participant in a deregulated electricity market with the only aim of
benefit maximization, one may envisage that storage will be used
for arbitrage, i.e. for taking advantage of the daily variations in
the spot market prices by shifting quantities of energy fromlow
price periods to high price periods [16], [17]. In this context, the
operational strategy may be obtained as an internal part of alarger
linear optimization algorithm, where the objective function is the
maximization of the daily profit by shifting power generation between
different time periods.

Fig. 2. Daily operation of the combined wind/EES power plant.

However, in electricity markets where wind power producershave
to pay for their deviations from contract, one may then consider
that the EES operation is actually determined by the sign of the
imbalances and the energy content limits. I.e., when the imbalance is
positive and there is spare capacity, the EES is charged and when
negative and there is spare energy content in the EES, the EES
is discharged. In such a case, this market participant is trying to
maximize his revenue by minimizing the potential regulation costs
induced by the deviations from contract. This is the situation we
concentrate on in the present paper. Fig. 2 presents the operation of
the combined wind/EES plant in such a market environment when
the curtailment option is not present. It is observed that the EES
manages to fix the power output to the bidding schedule (Pb) up to
hour 21, when the EES is empty and negative imbalances continue.
One can also notice that the storage actually acts as an integrator over
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the energy imbalances for consequent PTUs under the objective of
minimizing the regulation costs. In such a context, the maininfluence
on the EES operational strategy derives solely from the choice of the
bidding strategy. This strategy should be determined as an integral
part of a general stochastic optimization where the EES operation is
incorporated in the trading principles introduced in [12].

C. The EES sizing issue: principles of dynamic sizing

As mentioned above, the EES operates as an integrator over the
energy imbalances. Therefore, the EES capacity that is necessary for
absorbing the energy fluctuations is determined from both the mag-
nitude and the sequence of the imbalances. Consequent imbalances
of different signs are counterbalanced by the EES without the need
for extra capacity. To illustrate this, an example of the operation of
an EES device for two different imbalance patterns is presented in
Fig. 3. In both cases, the energy deviations take the same values for
the total period (5 occurrences of +1 p.u. and 5 occurrences of -1
p.u.) but in the two cases the sequence of the events is different. In
the first case all deviations with the same sign occur consecutively,
while in the second the sign of the deviations is changed in each PTU.
As can be easily observed, the sequence of deviations has a major
effect on the necessary EES capacity; in the first case a capacity of
5 p.u. is necessary, while in the second 1 p.u. is enough.

Fig. 3. Example of EES operation for 2 different sequences ofimbalances.

This simple example shows how one may calculate the necessary
storage capacity when the actual energy production for eachPTU
is known. However, at the time of bidding this information isnot
available. Instead, the power producer may possess information on
the forecast uncertainty. Using this information, it can bepossible to
assess a set of scenarios corresponding to all possible futures for the
wind power development. Based on these scenarios, the necessary
storage capacity may be evaluated. Each scenario however will yield
a different energy capacity. The set of possible energy capacities will
correspond to a probability distribution which may be used by the
energy producer to decide upon the necessary storage capacity. Since
the forecast uncertainty varies between different delivery periods, the
necessary capacity will not be fixed, but will deviate from one period
to the other. Therefore, if the power producer may assess theforecast
uncertainty in a form of possible wind power scenarios for the next
delivery period, then it is possible to decide upon the optimal storage
size necessary for minimizing imbalances.

The assessment of forecast uncertainty will play a central role for
the definition of the EES capacities. As presented in the example in
Fig. 3, one should accurately model both the forecast error magnitude

and temporal development through the interdependence structure of
forecast errors. Considering independent normal distributions for the
modeling of forecast errors for the different horizons ahead as in
[16], [18] for instance is not appropriate. Such approachesdo not
take into account neither the probabilistic information onthe forecast
uncertainty nor the interdependence structure of forecasterrors with
a given forecast series. In the present paper, a method recently
presented by the authors in [8] is used, allowing for the generation of
scenario forecasts of wind power production that comply with both
requirements.

IV. M ETHODOLOGY FOREESDYNAMIC SIZING

A. Scenario forecasts of wind power production

Owing to the limited predictability of wind generation and the
highly variable level of accuracy of point forecasts of windpower,
information about the situation-dependent uncertainty ofsuch fore-
casts is paramount [10]. The most promising manner of doing so is
to generate probabilistic forecasts of wind power, either from purely
statistical methods (see e.g. [19]), or by conversion of ensemble
forecasts of meteorological variables to ensemble forecasts of wind
power [20], [21]. Probabilistic forecasts give the complete probability
distribution of potential wind power production for each look-ahead
time, commonly up to 48-72 hours ahead.

A drawback of probabilistic forecasts is that they are produced
independently for each look-ahead time. Thus, they do not inform on
the development of the prediction errors through prediction series,
since they neglect their interdependence structure. As illustrated and
explained above, this information is of particular importance for
many time-dependent and multistage decision-making processes, such
as the operation of a wind/EES system. In order to satisfy this
additional requirement, one needs to generate scenarios ofshort-term
wind power production. This can be done with the method described
in [8]. The resulting scenario forecasts respect the (nonparametric)
probabilistic forecasts for the next period, and also rely on the most
recent information about the interdependence structure ofprediction
errors. Monte-Carlo simulation is further used for the generation
of the scenarios. The problem is defined as the sampling from
a multidimensional distribution with arbitrary marginalsand can
be treated using the techniques presented in [22], based on the
transformation of the marginals between different domains. First
a multivariate Normal distribution is used for generating aset of
Gaussian variables realizations that are correlated according to the
estimated interdependence structure and then these Gaussian variables
realizations are transformed to the desired marginals. Fig. 4 depicts
an example with the commonly provided point forecasts of wind
generation, corresponding probabilistic forecasts, as well as a set of
25 scenarios forecasts for a period of 43 hours ahead. This example
is for the case of a multi-MW wind farm in Denmark.

B. EES dynamic sizing

Based on the above methodology, a number of scenario forecasts
are generated, corresponding to the possible futures of thewind power
production. Since the methodology for generation of scenario fore-
casts is not computationally expensive, a large number of scenarios
can be generated and subsequently employed for decision-making.
For each of these scenarios, the combined wind/EES plant operation
can be assessed. This operation is defined by the bidding strategy,
the storage size, the charging/discharging power limits and the EES
energy content in the beginning of the delivery period.

Let us assume that a market participant directly bids the provided
point forecasts of wind generation on the day-ahead market.In Fig. 5,
the result of the possible scenarios for the EES energy content for
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Fig. 4. Point and probabilistic forecasts of wind generation, along with a set of 25 scenario forecasts, for a multi-MW wind farm in Denmark.

(a) Time plot (b) Histogram

Fig. 5. Assessment of the day-ahead potentially necessary EES energy contents.

the day-ahead operation of the wind/EES power plant is shown. The different scenario forecasts lead to different daily operation
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of the EES, thus to different potentially required EES capacities.
By gathering the information in a histogram, one may estimate
the probability distribution of the necessary EES energy content.
For instance in Fig. 5(b) is given the energy content distribution
corresponding to the EES operation of Fig. 5(a). For this specific
case, it appears that with an EES capacity of 4.82 p.u. the market
participant producer can be 100% sure that the power imbalances for
the next delivery period are minimized. A lower EES capacitywould
translate into a risk of not having enough EES capacity to fulfill this
task. This risk can be quantified by a parameterα, meaning that
there is a risk ofα% of not covering potential imbalances with the
storage device. Inversely, this risk can be quantified if deciding on
a certain storage capacity. In Fig. 5(b) we can see the EES capacity
that corresponds to different quantiles of the distribution, namely the
95% and 99% quantiles, corresponding to risk parameter values of
α = 5% andα = 1%, respectively.

In this point lies the core of the present contribution. Using the
information on the wind power uncertainty for the next delivery
period, the power producer may decide upon the necessary EES
capacity based on the level of risk exposure, translated into a specific
quantile of this distribution. For example, if a market participant
decides upon a risk hedging of95% (thus forα = 5%), the necessary
energy content will correspond to the 95% quantile of the energy
content distribution (Fig. 5(b)). Since the forecast uncertainty will
differ among different delivery periods, so will the necessary storage
capacity. Using the proposed technique, the power producermay
dynamically allocate the necessary storage capacity basedon the
desired risk exposure. In such a context, storage could be envisaged
as a service that could be contracted by the market participant for
hedging his portfolio against regulation costs.

V. CASE STUDY

The case of a Danish multi-MW wind farm is used as a basis. Point
forecasts result from the application of the Wind Power Prediction
Tool (WPPT) method [23], which uses meteorological predictions of
wind speed and direction as input, as well as historical measurements
of power production. All power predictions and measures, which
are normalized by the wind farm nominal capacityPn, cover a
period of one year. Hourly updated point predictions have anhourly
resolution (similar to measurements) up to 43 hours ahead. Then,
nonparametric probabilistic forecasts are produced with time-adaptive
quantile regression [19]. Predictive distributions are given by 19
quantile forecasts whose nominal proportions range from 0.05 to
0.95 with a 0.05 increment. From a probabilistic point of view,
since it is not possible to exclude any possibility, even though
extreme prediction errors might happen, the very tails of predictive
distributions are modeled as exponential tails. An evaluation of the
quality of probabilistic forecasts produced with this method is given
in [24]. Fig. 4(a) gives an example of such probabilistic forecasts
of wind generation, in the form of a fan chart. In parallel, Fig. 4(b)
depicts a set of 25 scenarios of power production for the sameperiod,
generated from the method of [8] (briefly introduced in Section IV-A),
along with the traditionally provided point forecasts for the coming
period. For the study performed in the following, the numberof
scenario forecasts to be generated for each period is set to 120.
Remember that this number can easily be raised to several thousands
for better uncertainty quantification.

The operation of a wind-hydro generation facility is investigated,
consisting of a hydroelectric power plant with an electric generator,
a wind park, lower and upper water reservoirs and penstock and
pumping pipes. The energetic round-trip efficiency of the EES,
corresponding to the global hydraulic circuit efficiency isassumed to
be ηs = ηch · ηdch = 75% without contribution from standby losses.

The charging and discharging efficiencies are further considered as
equal,ηch = ηdch, and the functionPL from equation 2 is assumed to
be of first order2. Both maximum hydro generation and pump nominal
capacity are considered as25% of the wind park installed capacity.
The cost of charging the EES (cch) corresponds to the internal cost
of the pumping operation and is taken as equal to 1.5e/MWh3.

Fig. 6. Profile of spot prices and regulation costs used in thestudy, based
on yearly averages.

The size of the EES is defined dynamically based on the principles
presented in Section IV-B. Possible remaining energy in thereservoir
after each delivery period (1 day) is transferred to the nextone. The
operation of the combined wind/hydro plant for a total period of 1
year is simulated. The combined plant is considered to operate in a
typical electricity pool. It is considered as a first simple case that the
market participant does not have access to advanced price forecasts,
and makes decisions based on climatologital forecasts corresponding
to the average over the year. The corresponding spot prices and unit
regulation costs used for the evaluation of the market operation are
depicted in Fig. 6. The unit cost for upregulation is considered as
50% of the spot price, while that for downregulation amounts to
60% of the spot price. These values are inspired by the analysis of
the Nord Pool market data performed in [25]. Note that this study
may be easily extended to incorporate better information onprices.
Also, the price uncertainty may be included in a second step in the
decision making-process, so that the decision on the dynamic sizing
derives from an overall regulation cost hedging point of view. Here,
prices are not used for decision-making, but more for illustrating how
the dynamic sizing of energy storage may impact the regulation costs
for a given auction period or over a period of time.

In Fig. 7(a) the dynamic EES capacity assessment based on the
99% quantile (risk parameterα = 1%) is presented. In particular, for
each day, an EES capacity is defined based on the99% quantile of
the respective energy content distribution (see Fig. 5(b)). As expected,
the size of the necessary EES varies throughout the year, based on the
anticipated wind power forecast uncertainty. Using this EES capacity
for each day of operation, the system operation has been simulated.
In Fig. 7(b), the hourly time-series of actual energy content of the
dynamically sized EES is depicted over this same year of operation.
One may then observe how this time-series are correlated with the

2It has been shown in [15] that constant efficiency assumptions are of
limited practicability in realistic investigations, but will be used here for the
sake of simplicity. More advanced loss mechanisms may be included in the
methodology and is the subject for future work.

3These settings for the hydro facility are obtained by related literature [16].
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(a) EES Capacity (b) EES Energy Content

Fig. 7. EES dynamic capacity assessment based on the 99% quantile (risk parameterα = 1%) and estimated energy content (1 year of operation).

Fig. 8. Histogram of the EES estimated energy content for oneyear of
operation.

daily sizing of the EES. In parallel, Fig 8 summarizes the histogram of
the energy content for 1 year of operation corresponding to Fig. 7(b).
For a large fraction of time, the energy storage is empty. There are two
reasons for that. On the one hand, the fact the storage is appropriately
dynamically sized does not mean that it has the optimal amount of
energy stored at the beginning of the delivery period. For instance,
if the methodology for a given day tells there is a need for large
storage capacity, but the storage is empty at the beginning of the
delivery period, there will be not possibility of compensating for
negative imbalances. On the other hand, the effect of the EESlosses
is quite dramatic. Indeed, since the power bid corresponds to the
point forecast, the positive and negative imbalances are expected to be
asymptotically equal. Therefore, one should expect the EESto operate
as a buffer that levels out these imbalances. However, losses make
that the EES can only releaseηs% of a positive imbalance previously
stored. This lead to a frequent emptying of the storage device. The
amount of energy lost due to the EES losses is a critical parameter
for the assessment of storage as discussed in detail in [15].Therefore
ideally, a market participant using a wind/EES should slightly reduce

his bid from the wind power point forecasts in order to ensurethere
will be more energy stored than released, which in terms of positive
and negative imbalances would result in even volumes.

In order to assess the economic feasibility of the methodology,
the operation of the combined wind/EES plant for the 1 year is
simulated, for 20 possibilities for EES sizing:(1) no storage,(2-
19) dynamic EES sizing based on the 17 quantiles rising from
15% to 95%, thus for risk parameters going from 5% till 85%,
with 5% increment, and the99% quantile (α = 1%, very low risk
exposure),(20) infinite storage4. Each of these scenarios corresponds
to a different strategy that the wind producer may follow forhedging
wind power forecast uncertainty. In Fig. 9(a), the total profit for the
producer and the regulation costs for each scenario are presented.
Following the proposed methodology, the dynamic sizing strategy
according to a low risk exposure (lowα) ensures a profit that is
very close to the case of a dedicated infinite storage. As shown in
Fig. 9(a), employing higher values of the risk parameterα directly
lead to higher risk exposure, and resulting costs on imbalances, finally
yielding a reduced overall revenue. For risk parameter values between
65% and 85% (thus relying on quantiles with proportions between
15% and 35% quantile) the storage size is so small that it actually
does not offer any profit. In Fig. 9(b) the respective maximumand
mean EES capacity for the operation of the system for each scenario
is presented, calculated by the respective EES capacity foreach day
(see e.g. Fig. 7(a) for the99% quantile scenario). One can see that
the maximum and mean EES capacity needed is reduced with the
decreasing quantiles, meaning that higher risk exposure, leads to a
reduced need for EES capacity.

VI. CONCLUSIONS- FUTURE WORK

In market conditions that do not favor wind power against other
energy sources, electrical energy storage can be used for minimizing
the imbalance costs due to the limited predictability of wind power.
The storage size necessary for performing this task dependson the
forecast error for each delivery period. Since this error varies between

4As infinite storage capacity the minimum capacity for hedging all wind
power forecast errors is considered, quantified based on theanalysis presented
in Section IV-B as 12.08 p.u. Any storage capacity larger than this will be
underused.
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(a) Profit/cost curves (b) EES max/mean Energy Content

Fig. 9. Profit/cost curves and EES max/mean energy content for the different dynamic sizing scenarios.

successive delivery periods, the necessary storage is alsoexpected
to follow these variations. Therefore, the assignment of dedicated
storage based on a worst-case scenario (e.g. over a one-yearperiod)
will lead to a severe under-utilization of the installation. Instead, if
storage is considered as a service in the energy market, eachpower
producer may rent the necessary capacity in each delivery period
for minimizing power imbalances. Alternatively, one may use the
dynamic sizing methodology introduced here for sizing storage given
an accepted risk exposure to regulation costs.

The assessment of expected forecast uncertainty for each auction-
ing/delivery period is central for dynamic storage sizing.The method-
ology presented in this contribution shows how this decision can be
made based on scenario forecasts derived from probabilistic forecasts
and the most recent information on the interdependence structure
of forecast errors for the set of forecast horizons of relevance. By
assessing the combined wind/storage plant operation for all possible
scenario forecasts over the next delivery period, a distribution for the
necessary energy content may be obtained. When this distribution
is obtained, the power producer may decide upon the desired risk
exposure by choosing a storage capacity that corresponds toa specific
quantile of this distribution. Note than in the future, moreadvanced
information on expected regulation costs can be employed inthis
methodology, thus permitting to make more appropriate decisions on
the sizing depending upon volatility of regulation unit costs. One
could then evisage desingning optimal trading strategies accounting
based on optimal use of storage capacity.

This proposal dynamic sizing methodology may be used as a basis
for introducing energy storage as a market entity that is hedging
the power producer against the risk due to the limited wind power
predictability. The producer may estimate the necessary storage size
and also decide on his risk exposure. The methodology can be
used for assessing the profit and costs of implementing storage.
Also, since the storage size is related to the forecast uncertainty, the
dynamic sizing of energy storage is a flexible approach to anticipated
improvement of forecast accuracy in the future. In market conditions
that favor wind, the same methodology may be used from the side of
the system operator, for the assessment of the necessary reserves for
securing the system operation due to the uncertainty in windpower
production. Finally, it should be mentioned that the methodology
presented here is generic: dynamic storage sizing corresponds to

the first application from a series of different tasks in the energy
portfolio management that may be redefined accordingly, like reserve
allocation, economic dispatch, etc., based on a stochasticoptimization
paradigm.
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