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Abstract

Wave energy will certainly have a significant role to play in the deployment of renewable energy

generation capacities. As with wind and solar, probabilistic forecasts of wave power over horizons

of a few hours to a few days are required for power system operation as well as trading in electricity

markets. A methodology for the probabilistic forecasting of the wave energy flux is introduced,

based on a log-Normal assumption for the shape of predictive densities. It uses meteorological

forecasts (from the European Centre for Medium-range Weather forecasts - ECMWF) and local

wave measurements as input. The parameters of the models involved are adaptively and recursively

estimated. The methodology is evaluated for 13 locations around North-America over a period of

15 months. The issued probabilistic forecasts substantially outperform the various benchmarks

considered, with improvements between 6 and 70% in terms of Continuous Rank Probability Score

(CRPS), depending upon the test case and the lead time. It is finally shown that the log-Normal

assumption can be seen as acceptable, even though it may be refined in the future.

Keywords: wave energy, forecasting, statistical models, adaptive estimation, forecast skill,

probabilistic calibration

1. Introduction

Ocean wave energy is a new, but rapidly expanding field, which offers the promise of generating

significant amounts of electricity in coastal areas [1]. While only a small number of wave farms

are now in operation, there are plans for significant expansion in several countries. Status and
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perspectives for wave energy developments in Europe were reviewed by Clement et al. [2] while a

more recent global update is given by Esteban & Leary [3]. As with other forms of renewable energy,

such as wind and solar power, wave energy can be highly variable and of limited predictability.

The problem for Transmission System Operators (TSOs), utilities and trading agents is therefore

to forecast ocean wave energy over horizons consistent with the operation of electricity grids and

markets. These horizons are typically short, in the area of six hours in the United States or United

Kingdom, and somewhat longer, in the order of two days in European electricity markets. Even

though we focus here on lead times up to 48 hours, TSOs and utilities will also be interested in

forecasting over somewhat longer horizons, in the range of several days, for operational planning,

reserve usage and peak load matching. Very-short lead times (between 0 and 30 minutes) could

also be considered in the future for the purpose of the control and optimal economic operation of

the wave energy farms.

The value of probabilistic forecasts in decision-making related to the optimal integration of

renewable energy generation in power systems is increasingly recognized, as for the example case

of reserve quantification [4]. This follows from a more general result: for a large class of decision-

making problems, optimal decisions directly relate to quantiles of conditional predictive distri-

butions [5]. Consequently, and similar to other renewable energy sources, wave energy forecasts

should optimally take the form of predictive densities.

Since very little data exists for real-world projects of operating wave energy converters, emphasis

is placed on the wave energy flux, which is the central variable representing the power these

wave energy converters may harvest from the sea. The capability to forecast wave energy flux at

these horizons currently exists. In prior studies, it was determined that statistical models could

predict ocean wave energy more accurately at horizons of 1-6 hours, while for longer horizons,

physics-based models were more accurate [6]. However, it was found that combining both methods

predicted more accurately than either one individually [7], in line with parallel works that led to

similar conclusions for wind [8] and solar [9] energy prediction. The objective of the present study

is to explore such a combined approach in a more general setup by producing full probabilistic

forecasts of wave energy flux. A parametric approach to probabilistic forecasting based on log-

Normal distributions is described, the moments of which are determined through common linear

dynamic models using exogenous information (provided by the raw forecasts of the European Center
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for Medium-range Weather Forecasts (ECMWF)) and local observations. Model parameters are

adaptively and recursively estimated in a Recursive Least Squares (RLS) framework.

The organization of this manuscript is as follows. Section 2 introduces the general probabilistic

forecasting methodology using log-Normal predictive densities, as well as the chosen models for

their location and scale parameters. The approach to the adaptive and recursive estimation of the

model parameters is subsequently described in Section 3. The methodology is applied in Section 4

for the probabilistic forecasting of wave energy flux at 13 locations around North-America, where

the corresponding results are discussed. The manuscript ends in Section 5 with conclusions and

perspectives regarding further work.

2. Probabilistic forecasting methodology

2.1. Proposal of parametric predictive densities

The wave energy flux is seen as a stochastic process {Yt}, the realisations of which define the

time-series {yt}. t is the time index and for simplicity it is assumed that the observations are

sampled at regular intervals. The wave energy flux corresponds to a power content per unit of

surface of the crest length. It is usually expressed in kW.m-1 and is given by

Yt :=
g2ρ

64π
H2
t Tt, Yt ≥ 0 (1)

where g is the gravitational acceleration constant and ρ the density of seawater. Ht and Tt denote

the significant wave height and mean wave period, respectively. In addition, the multiplicative

nature of the relationship between wave height and period means that the uncertainty in forecasts

of the wave energy flux is greater than for the height and period individually.

The approach here is probabilistic forecasting in a parametric setup, hence based on assumption

for the shape of predictive densities. For any given time t it is aimed at issuing forecasts of the

characteristics of the random variable Yt+k conditional to the models and information available up

to time t. k is referred to as the lead time.

Based on an empirical analysis of the wave energy flux in logs, it appears that the formulation

of a log-Normal assumption about predictive densities would be appropriate. This assumption will

be verified through the case-study applications and the discussion of our forecasting results. For a

given lead time k it is therefore assumed that

Yt+k ∼ lnN (µ̂t+k|t, σ̂
2
t+k|t) (2)
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where µ̂t+k|t and σ̂t+k|t are forecasts of the location and scale parameters of the log-Normal distri-

bution. The density for the log-Normal distribution reads

f(y) =
1

yσ
√

2π
exp

{
−(ln(y)− µ)2

2σ2

}
, y > 0 (3)

Assuming a variable Yt to be distributed log-Normal is then equivalent to considering Xt = ln(Yt)

to be distributed Gaussian,

Xt = ln(Yt), Xt ∼ N (µt, σ
2
t ) (4)

The introduction of the various models and estimation approaches introduced in the following will

extensively rely on this idea. Note that one could extend this proposal by considering general-

ized logit-Normal distributions instead, as introduced by Pinson [10] for the case of wind power

generation. This extension could be especially useful in the future when accounting for the wave

energy converters and their nonlinear effect on the processes involved. Here by using the logarith-

mic transformation of (4), the resulting stochastic process {Xt} can be modelled in a Gaussian

framework.

If aiming at extracting point forecasts from the predictive densities that will be produced, the

properties of log-Normal distribution tells us that the conditional expectation of wave energy flux

is

ŷt+k|t = exp

{
µ̂t+k|t +

σ̂2t+k|t

2

}
(5)

while more intuitively, one could think that it would simply be given by exp(µ̂t+k|t). exp(µ̂t+k|t)

actually corresponds to the median of the conditional density for that random variable.

2.2. Dynamic models for the location and scale parameters

There are in principle two ways to combine physical and statistical approaches to forecasting.

One may include the output of the physical model (ECMWF here) in a regression model of the flux.

Alternatively, one may fit a statistical model to the residuals from the physics model in order to

correct for its dynamic deficiencies. Such a post-processing of physical model forecasts is commonly

referred to as Model Output Statistics (MOS). Both ideas mentioned above are here merged, since

regressing on the physical model output while also correcting for dynamical deficiencies in a time-

series analysis framework.

To begin with,

x̃t+k|t := ln

(
g2ρ

64π
H̃2
t+k|tT̃t+k|t

)
(6)
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denotes the log-transformed value of the wave energy flux predicted by the ECMWF model at time

t for time t + k. It should be understood that for both location and scale parameters separate

models are built for every individual lead time k. Similarly xt is the log-transformed value of

the measured wave energy flux at time t. The log-transformation is there to allow for a Gaussian

assumption for the residuals of the statistical models to be proposed, which would not be acceptable

for the non-transformed variable. Even though modeling is to be based on the values of x̃, the final

forecasts are issued in the space of the original quantity, then respecting its original dimension.

For lead times between 1 and 48 hours, a relevant model for the location parameter µ̂t+k|t in

its vectorial form is

µ̂t+k|t := θ>t zt = θ0 + θ1x̃t+k|t + θ2xt + . . .+ θl+2xt−l (7)

with

θt := [θ0, θ1, θ2, . . . , θl+2]
> (8)

zt :=
[
1, x̃t+k|t, xt, . . . , xt−l

]>
(9)

where l is then the order of the autoregressive part of the model, which should be selected depending

upon the lead time of interest. The autoregressive order is typically larger for short lead times

(say, up to 6-9 hours) and then null for further lead times. The maximum lag l can be determined

after examining the autocorrelation and partial autocorrelation functions of the {xt} time-series,

by minimisation of either Akaike Information Criterion (AIC) or Bayesian Information Criterion

(BIC), or finally through a cross-validation exercise. In the above, θ0 has the same dimension as

the x and x̃ variables involved in this regression. This is while the θis (i > 0) are dimensionless.

In (7) the model parameters are time varying, i.e., they evolve slowly over time. This is also

the case with wind model dynamics, as proposed by Gneiting et al. [11], Hering and Genton [12]

and Pinson [10] among others. In essence, the model includes a physics component based on the

ECMWF model forecasts (θ1x̃t+k|t), and an autoregressive component (θ0 + θ2xt + . . .+ θl+2xt−l)

that allows recalibration based on the recent history of the wave energy flux time-series.

In parallel, since it was not found that the scale parameter should be made an explicit function

of anything else than time (and lead time, obviously), it then takes the following form,

σ̂t+k|t :=
√
βt (10)
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i.e. the scale parameter also evolves over time, with βt the actual model parameter which will be

tracked adaptively. A different model parameter βt is used for each individual lead time k.

3. Adaptive and recursive estimation of model parameters

The parameters θt and βt are estimated within a Recursive Least Squares (RLS) method [13, 14].

Recursive estimation offers the advantage that only the last available measurements are used at

each time step for updating the model parameters. This contrasts with the more computationally-

intensive idea of employing a sliding window, as done by Gneiting et al. [11] and Hering and

Genton [12], for which estimation is performed on a bulk of data at each time step.

Focusing on the model related to lead time k, the estimate of the parameters θt at time t is

defined as

θ̂t := arg min
θ

t∑
i=1

λt−i
(
xi − θ>z̃i−k

)2
(11)

where λ is the forgetting factor (λ ∈ (0, 1)), allowing for the exponential forgetting of past obser-

vations, for which the corresponding effective number of observations is defined as nλ = (1− λ)−1.

The value of the forgetting factor is typically slightly below 1.

In a recursive framework the formulae for updating the LS-estimate of θt based on the newly

available information at time t summarises to

R̂t = λR̂t−1 + z̃t−kz̃
>
t−k (12)

θ̂t = θ̂t−1 + R̂−1t z̃t−kεt (13)

where εt is defined as εt := xt − θ̂
>
t−1z̃t−k. Rt is covariance matrix for the variables entering the

regression model of Eq. (7) as estimated at time t. It summarizes the variances and covariances

of these variables, similar to the case of the LS estimates in a regression model. The derivations

necessary for obtaining this updating scheme can be found in Madsen [14] among others.

Since the scale parameter is given by a constant only, its adaptive estimation at time t and for

a given led time k can be performed thanks to an exponential smoothing scheme, being consistent

with the update of the dynamic model for the location parameter. This writes

β̂t = λtβ̂t−1 + (1− λt)εt2 (14)
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The coefficients θ̂t and β̂t are initialized as

θ̂0 := [0 1 0 . . . 0]> (15)

β̂0 := ε (16)

with ε a small value. Consequently at t = 0 the output location parameter correspond to the

original ECMWF forecast. β̂0 could alternatively be set to an expert guess. The initial inverse

covariance matrix R̂0 takes the form of an identity matrix times a small constant, yielding a

small loading on its diagonal. Only the updating formula (12) is used in the recursive estimation

procedure as long as R̂t is not invertible. When that point is reached, both (13) and (14) are also

employed at each time step for updating the models for the location and scale parameters.

4. Application and results

4.1. Data characteristics

The original measurement dataset consists of hourly values for the significant wave height

and wave period. These were obtained from 11 buoys from the U.S. National Data Buoy Cen-

tre (NDBC) and two from the Canadian Integrated Science Data Management (ISDM). The

NDBC wave spectral data were downloaded from the National Oceanographic Data Centre web-

site (www.nodc.noaa.gov) whereas the ISDM data were downloaded from the web portal (http:

//www.meds-sdmm.dfo-mpo.gc.ca/isdm-gdsi/waves-vagues/index-eng.htm). Following a ba-

sic quality control procedure applied to the observed spectra [18], hourly time series for significant

wave height ({Ht}) and the mean energy wave period ({Tt}) were derived. This procedure consists

in discarding values that are (i) out of the acceptable physical range, (ii) remaining constant for

1 day or more, and (iii) seen as outliers owing to their substantial deviation from the mean be-

haviour, in terms of process magnitude values or in terms of the amplitude of the variations from

one hour to the next.The wave energy flux is computed from these values using (1). Measurements

were collected for a period ranging from the 1st December 2007 until the 31st March 2010. For 2 of

the buoys (41048 and 51001) the datasets were not complete, with measurements missing for a few

months at the beginning or at the end of the period. A complete overview of the buoys locations

and collected datasets are given in Figure 1 and Table 1.

The physics model-based forecasts are those from the Wave Model (WAM) of ECMWF. The

basic principle is to model waves as a function of wind inputs, wave-wave interactions, and dissipa-
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Figure 1: Map with the locations of the 13 buoys considered in the empirical work.

Table 1: Characteristics of the buoys and of the corresponding datasets.

Id. Dates Depth [m] Location (Latitude, Longitude) Operator
41025 1.12.2007-31.3.2010 68 Diamond Shoals, NC (35.001 N, 75.40 W) NDBC
41048 1.12.2007-31.12.2009 5261 West Bermuda (31.98 N, 69.65 W) NDBC
42001 1.12.2007-31.03.2010 3246 Mid-Gulf, Louisiana (25.90 N, 89.67 W) NDBC
42036 1.12.2007-31.03.2010 54 West Tampa, FL (28.50 N, 85.52 W) NDBC
42056 1.12.2007-31.03.2010 4446 Yucatan Basin (19.874 N, 85.06 W) NDBC
44014 1.12.2007-31.03.2010 48 Virginia Beach, VA (36.61 N, 74.84 W) NDBC
46001 1.12.2007-31.03.2010 4206 Gulf of Alaska, AK (56.30 N, 148.02 W) NDBC
46041 1.12.2007-31.03.2010 132 Cape Elizabeth, WA (47.35 N, 124.73 W) NDBC
46047 1.12.2007-31.03.2010 1393 Tanner Banks, CA (34.43 N, 119.533 W) NDBC
46083 1.12.2007-31.03.2010 136 Yakutak, AK (52.24 N, 137.99 W) NDBC
46132 1.12.2007-31.03.2010 2040 South Brooks, BC (49.74 N, 127.93 W) ISDM
46207 1.12.2007-31.03.2010 2125 East Dellwood, BC (50.88 N, 129.92 W) ISDM
51001 21.02.2008-24.12.2009 3430 Kauai, HI (23.45 N, 162.28 W) NDBC

tion. The WAM is a third-generation system which has been used primarily to model deep water

domains, although it can also be applied in shallow water domains [15, 16]. The ECMWF WAM

model is further described in Janssen [17] and Bidlot et al. [18].

The model forecasts are derived from the global high resolution version of WAM. It had a

latitude-longitude grid with an average resolution of 40 km until the end of January 2010. Since

then, the resolution has been increased to 28 km. Because the wave model is actively coupled to
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the ECMWF global atmospheric model, it provides feedback to the atmosphere in the form of the

change to the surface roughness, which in turn influences the varying momentum and energy flux

from the atmosphere to waves. Shallow water effects are also included. ECMWF WAM forecasts

are issued twice daily (0 and 12 UTC starting time) with outputs having a 3-hour resolution.

A maximum horizon of 48 hours is considered here. The model forecasts include the significant

wave height and period. The forecasts for the flux are calculated from these values using (1), being

consistent with treatment of measurements. Forecasts are available for the whole period over which

the measurements were collected. The temporal resolution of the measurements is matched with

that of the forecasts, i.e. 3-hourly.

4.2. Model set-up and evaluation framework

From the available data, two periods are defined, the first one being used for identification

(and initial training) of the statistical models, and the second for evaluating model performance.

The learning set covers the period from the 1st December 2007 until the 31st December 2008. The

remainder of the dataset, that is, from the 1st January 2009 until the 31st March 2010, is used for

out-of-sample evaluation of forecast performance.

Over the 13-month learning period, a part of the data is used for one-fold cross validation (the

last 3 months) in order to select an optimal autoregressive order for the dynamic models, as well

as the optimal value for the forgetting factor. The selection of optimal structures and forgetting

factor is done in a trial-and-error manner, by evaluating the results obtained over the validation

set with different model setups. The underlying idea is that while minimizing forecast evaluation

scores on the training data only could lead to over-fitting, the evaluation of forecast performance

on an independent cross-validation dataset permits to inform of how the model would perform

when facing new data (the so-called generalization ability).

The maximum autoregressive lag l is expected at maximum 3, while the range of envisaged

value for the optimal forgetting factor is [0.98, 0.999]. For more information on cross validation,

the reader is referred to Stone [19]. The criterion to be minimised over the cross-validation set

is the negative logarithmic score, also known as Ignorance after the work of Roulston and Smith

[20]. For a given predictive distribution f̂t+k|t(y) and corresponding wave energy flux measurement

yt+k, the Ignorance score value Ist,k is given by

Ist,k := − ln(f̂t+k|t(yt+k)) (17)
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so that Ignorance can be averaged over the validation and evaluation sets, calculated separately

for each horizon,

Isk := − 1

N

N∑
t=1

ln(f̂t+k|t(yt+k)) (18)

where N stands for the number of forecast series. Only one forgetting factor value is selected

for each buoy, being the same for all lead times. Further refinement may consider optimizing the

forgetting factor for each lead time individually.

The intercept term θ0 (see (8)) was found necessary for all buoys and all lead times as well as the

linear regression on the ECMWF WAM model output (related to the coefficient θ1). Regarding the

autoregressive part of model (7), it was found that in a generic manner for all buoys the maximum

lag l should be 2 for 3-hour ahead forecasts, 1 for 6-hour ahead forecasts, and 0 for further lead

times. Note that this may not be the case for other buoys depending upon the local characteristics.

Optimal model structures should always be decided upon based on a thorough analysis of available

data and forecast experiments. The optimal forgetting factor values obtained through this cross-

validation exercise are collated in Table 2. For all buoys the changes in dynamics are fairly slow,

with equivalent training window sizes (defined as 1/(1− λ)) between 100 and 1000 time steps. No

relationship can be found between the value of the optimal forgetting factor and the location and

depth of the buoys considered.

Table 2: Optimal forgetting factor values for the 13 buoys as selected based on minimizing the average Ignorance
score over the validation set.

Id. 41025 41048 42001 42036 42056 44014
λ 0.999 0.999 0.999 0.993 0.999 0.996

46001 46041 46047 46083 46132 46207 51001
0.991 0.999 0.999 0.991 0.999 0.998 0.996

4.3. Evaluating the skill of the forecasts

Before evaluating the performance of the probabilistic forecasting methodology, let us first il-

lustrate the outcome of that methodology based on the example forecasts of Figure 2 issued for

West Tampa (buoy id. 42036) on the 1st January 2010 at 0 UTC. Predictive distributions are rep-

resented by a set of prediction intervals with increasing nominal coverage rates (from 10 to 90%)

in a fashion similar to Pinson and Kariniotakis [21]. The point forecasts that may be extracted
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from these predictive densities (following (5)) are also represented, along with corresponding ob-

servations. This plot nicely represents how the formulated log-Normal assumption, combined with

the dynamic models for every lead time, makes the shape and width of predictive densities evolve

with the lead time and the level of wave energy flux.

Figure 2: Probabilistic forecast of the wave energy flux issued for West Tampa (buoy id. 42036) on the 1st January
2010 at 00:00 UTC. The point forecast (i.e. the conditional expectation) is also represented.

Probabilistic forecasts of the wave energy flux are assessed in terms of their overall skill. Such

a skill is quantified with proper skill scores like Ignorance used in the above. Another proper skill

score which is widely used in the literature is the Continuous Rank Probability Score (CRPS) [22].

The value of the CRPS for a given forecast density f̂t+k|t(y), with related cumulative distribution

function F̂t+k|t(y), and corresponding measurement yt+k, is calculated as

CRPSt,k :=

∫
y

(
F̂t+k|t(y)−H(y − yt+k)

)2
dy (19)

where H(.) is the Heaviside step function, taking the value 1 for y ≥ yt+k and 0 otherwise. The

CRPS for a given lead time over the whole evaluation set is calculated as the average over t of
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CRPSt,k values as in (18). As for the case of the Mean Absolute Error (MAE) criterion used for

assessing single-valued forecasts, both Ignorance and CRPS are negatively-rewarding score: the

lower the better. The Ignorance score has no unit while the CRPS has the same unit as the wave

energy flux (kW.m-1).

Over the evaluation set, the skill of the forecasts is evaluated against that of two common

benchmarks, climatology and persistence. Climatology relies on all available past measurements

gathered to form the so-called climatological distribution Gc. This distribution is then used as an

unconditional predictive density, i.e. at any time t and lead time k by assuming that

Yt+k ∼ Gc (20)

Since it is generally easy to outperform for short lead times (say, less than a day), another relevant

benchmark is the probabilistic generalization of persistence. Persistence is based on a random walk

model. In the present case, this translates to defining predictive densities based on the assumption

such that

Yt+k ∼ lnN
(
xt, σ̂

p
t
2
)

(21)

This means that the location parameter of log-Normal predictive densities is directly given by

the last (log-transformed) measurement. The scale parameter σ̂pt may be obtained through an

exponential smoothing scheme similar to that of (14). This involves defining εt as εt = (xt− xt−1)

and using a fairly low forgetting factor instead to accommodate rapid changes in the dynamics of

εt. It is chosen as 0.9 here.

As an illustrative example, Figure 3 depicts the skill evaluation results at Diamond Shoals (buoy

id. 41025), which is the site where the skill of the probabilistic forecasts is the poorest. Whatever

the skill score considered, persistence is the most serious benchmark for short lead times, while

climatology takes over for further lead times. The skill of persistence appears to degrade more

rapidly when using the Ignorance score. This is owing to the higher sensitivity of this score which

harshly penalizes large forecast errors. With both scores, the proposed probabilistic approach

significantly outperforms both benchmark, even though the improvements over persistence are

fairly small for the very short-term (say, between 0 and 6 hours ahead).

In addition, a skill score based on the CRPS is introduced: it expresses the improvement over
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Figure 3: Probabilistic forecast skill as a function of the lead time at Diamond Shoals, as evaluated with both the
CRPS and the Ignorance score. The two benchmarks considered are persistence and climatology.

the best of the two benchmarks considered. This skill score for a given lead time k is defined as

SCRPSk := 100
min(CRPSpk,CRPSck)− CRPSk

min(CRPSpk,CRPSck)
(22)

where CRPSc and CRPSp denote the CRPS value for the climatology and persistence benchmarks,

respectively. SCRPS is expressed in percent with positive values indicating improvements over the

benchmarks. Note that such type of skill score cannot be readily defined based on the Ignorance

score.

Figure 4 gathers the results for all 13 locations in terms of the evolution of the SCRPS with

the lead time. All the skill score values are positive, indicating that the probabilistic forecasting

approach is always better than the best of the benchmarks. SCRPS values increase with the lead

time and reach a maximum, after 24 hours, between 40 and 70% depending on the buoy location.

The lowest skill overall is at Diamond Shoals (buoy id. 41025) while the best results are obtained

in the Gulf of Alaska (buoy id. 46001).

4.4. Reliability of the probabilistic forecasts

A crucial aspect of probabilistic forecasts is reliability, i.e., the correspondence of predicted and

observed probabilities. For continuous variables like the wave energy flux, reliability can be visually

assessed with Probability Integral Transform (PIT) diagrams. For an extensive description of how
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Figure 4: Comparison of the skill of the probabilistic forecast approach with respect to the climatology and persistence
benchmarks based on the SCRPS as a function of the lead time.

these diagrams are built, see Pinson et al. [23]. To summarize, a number of quantiles forecasts

q̂
(αj)

t+k|t with various nominal proportions (denoted αj) are extracted from the predictive densities.

By definition, a quantile forecast q̂
(αj)

t+k|t with nominal proportion αj is defined by

PF̂t+k|t

[
yt+k < q̂

(αj)

t+k|t

]
= αj , αj ∈ [0, 1] (23)

This means that having a frequentist approach, a quantile forecast with nominal proportion αj

should cover the observation αj% of the times. PIT diagrams then allow for the direct comparison

of the nominal and observed proportions. For the calculation of these observed proportions, let

us introduce the indicator variable ξ
(αj)
t,k . Given a quantile forecast q̂

(αj)

t+k|t issued at time t for lead

time t+ k, and the verification yt+k, ξ
(αj)
t,k is given by

ξ
(αj)
t,k := 1{yt+k < q̂

(αj)

t+k|t} =

 1, if yt+k < q̂
(αj)

t+k|t

0, otherwise
(24)
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Finally the observed proportion α̂k,j corresponding to the nominal one αj for forecasts with lead

time k is obtained as

α̂k,j :=
1

N

N∑
t=1

ξ
(αj)
t,k (25)

where N is the number of time indices in the evaluation set. PIT diagrams plot α̂k,j against αj for

a chosen lead time k and with αj varying between 0 and 1. Here the nominal proportions αj are

chosen in {0.05, 0.1, . . . , 0.9, 0.95}.

Results from the evaluation of the reliability of the probabilistic forecasts are gathered in

Figure 5 for two example lead times, 12 hours ahead (top row) and 48 hours ahead (bottom row).

In the ideal case of perfectly calibrated forecasts and of an evaluation set of infinite size, the

curves in these plots should lie along the diagonal. For evaluation sets of limited sizes, however,

deviation from the diagonal are to be expected owing to sampling (and potentially correlation)

effects [21, 24]. The magnitude of potential deviations are illustrated by 95% intervals determined

from making a Binomial assumption on the actual observation falling above or below each of the

quantiles considered (that is, for αj = 0.05, 0.1, etc.). It was verified that no correlation effect

should be accounted for.

The evaluation results are split into two groups: the buoys for which probabilistic forecasts may

be considered as having acceptable reliability (left column), and those for which their reliability

is not acceptable (right column). These groups were formed after visual inspection of the curves

for the observed proportions of the quantiles of the predictive densities lying or not within the

range of 95%-intervals around the diagonal. They were noticed to be the same for most lead times,

with the probabilistic forecasts at buoys 42001 (Mid-Gulf, Louisiana), 46047 (Tanner Banks, CA),

46132 (South Brooks, BC) and 46207 (East Dellwood, BC) being consistently less reliable than for

the other locations. At all these sites, predictive densities tend to significantly overestimate the

observed wave energy flux. Interestingly, these sites do not appear to have a common characteristics

e.g. water depth, location or distance to shore, which would account for this finding. It shows

however that the log-Normal assumption used in the present work may be further evaluated and

refined in the future so as to improve its general applicability to probabilistic forecasting of the

wave energy flux.

15



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

nominal proportions

ob
se

rv
ed

 p
or

po
rt

io
ns

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● 41025
41048
42036
42056
44014
46001
46041
46083
51001

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

nominal proportions
ob

se
rv

ed
 p

or
po

rt
io

ns

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● 42001
46047
46132
46207

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

nominal proportions

ob
se

rv
ed

 p
or

po
rt

io
ns

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● 41025
41048
42036
42056
44014
46001
46041
46083
51001

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

nominal proportions

ob
se

rv
ed

 p
or

po
rt

io
ns

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● 42001
46047
46132
46207

Figure 5: PIT diagrams for the evaluation of the reliability of probabilistic forecasts. These results are for lead times
of 12 hours ahead (top) and 48 hours ahead (bottom). The buoys are split into two groups: those where forecasts
may be seen as reliable (left), and those where the forecasts can be deemed as non-reliable (right). The bars indicate
the potential range of observed proportions for perfectly reliable forecasts.

5. Conclusions and perspectives

The possibility of issuing fully probabilistic forecasts of the wave energy flux by making optimal

use of meteorological predictions (from ECMWF) and local wave measurements was investigated.
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The forecasts obtained were shown to substantially outperform the usual benchmarks i.e. clima-

tology and persistence. Improvements obtained in terms of CRPS values are between 6 and 70%

depending upon the test case and the lead time.

It was proposed to base the forecasting methodology on a log-Normal assumption for the shape

of predictive densities. An obvious advantage of such an assumption is that it allows working in

a classic Gaussian framework after transformation of the original wave energy flux data. This as-

sumption appeared to be appropriate for most of the sites considered in the case-study application,

in view of the acceptable reliability of the probabilistic forecasts issued. It may be refined in the fu-

ture since the calibration of the forecasts was observed to significantly differ from perfect reliability

at a number of sites. Other parametric assumptions e.g. log-logistic or generalized logit-Normal,

may be considered. Alternatively, non-parametric approaches such as those employed in wind and

solar power forecasting [9, 21] could be envisaged.

Future developments will focus on the possibility of using ensemble forecasts of wave parameters

as an input to this type of probabilistic forecasting methodologies. Also, more advanced models

may be considered for the post-processing of the raw information provided by meteorological model

outputs. Finally, it will be of particular interest to look at the joint forecasting of wind-wave energy

output since it is most likely that a number of offshore wind parks and wave energy farms will be

jointly operated in the future.
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