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Abstract—A two-step methodology for forecasting of electricity mean reverting spikes, positive skewness and high kurto-
spot prices is introdgced, with focus on the impact of.predicted sis along with intra- and inter-day serial correlation [8]—
system load and wind power generation. The non-linear and 1) These features arise from the distinct charactessif
non-stationary influence of these explanatory variables is accom- . . . - o
modated in a first step based on a non-parametric and time- eIectnchy as a commodlty. Firstly, !ack OT ‘?'"eCt stoﬂa_Ilyl
varying regression model. In a second step, time-series models@long with the specialized and technically limited transsion
i.e. ARMA and Holt-Winters, are applied to account for residual  system required, makes arbitrage over time and space difficu
autocorrelation and seasonal dynamics. Empirical resullts are [11], [12]. Secondly, demand for electricity is highly iastic
presented for out-of-sample forecasts of day-ahead prices inyhile exhibiting strong seasonalities in the short termakte

the Western Danish price area of Nord Pool's Elspot, during hile th v function is di fi d
a two year period covering 2010-2011. These results clearlyW ile the supply function is discontinuous, convex andsiee

demonstrate the practical benefits of accounting for the compie ~ increasing at the high production end [9], [13], [14]. Thenai
influence of these explanatory variables. of the present paper is to propose a forecasting methodology

Index Terms—Electricity prices, nonlinear modeling, nonpara- which allows for accommodating the effect ,Of .the em.erging
metric modeling, forecasting, adaptivity, robustness renewable sources as well as the characteristics desdribed
[8]-{10], [14].
In [3], predicted power production is shown to significantly
I. INTRODUCTION impact the distribution moments of day-ahead electricitggs

HE PARTICIPANTS in deregulated electricity marketdnrough @ Danish case study. Motivated by these findings,

rely, among other things, on forecasts of future prices f(_t)tpe Jpresent paper introduces a two-step _methodol_ogy for
bidding and optimizing the dispatch of their generationtsini 'SSUINg point forecasts for electricity spot prices, actng
Methods for deriving such forecasts can be divided into twg" the impact of predicted load and wind power production.
fundamentally different categories: economical equilibr ISt @ time-varying function is estimated, jointly mapgi
models that mimic the actual pricing model, and statistic§}® Predicted hourly load and wind power production to a
ones. The former models are able to provide excellent fetecacorre.s.pondlng spot price. Thg function is buﬂt based on a
when given sufficiently accurate information (see e.g. [2], conditional parametric regression model for which the para

and references therein). This information is however saldcSters are estimated adaptively. In addition, past obsenst
available to individual market participants. In additicthe are discounted exponentially as new ones become available.

presence of non-dispatchable yet cheap generation urtinsinThe resulting flexibility in the model serves the purpose of
system implies that this information might be impossible tgccommodatlng'both the non-llneqr relationship between th
obtain since their production is indeed stochastic. Sieais explanatory variables and the prices, as well as the non-

approaches then appear to be a relevant alternative stationarity of all the processes involved. Although here a
8nditional parametric model is chosen for the inclusion of

The increased focus on curbing carbon emissions worldwi . )
has led to vast investments in renewable energy sources 4z Wind power and load as explanatory variables, other mode
pes might be just as suitable. For instance including the

in particular wind power. Many of these emerging ener X . . .
P P y ging gorecast wind power production along with the load in the

sources, wind power included, share a characteristic ingbei danfi | | K model of [15]. R dtefs
non-dispatchable due to the varying availability of thel fue® aptive wavelet neura-net\_/vor model of [ ] cegar S
model chosen, the main message of this paper remains

which also cannot be stored. Consequently these sources?g?e th ind duci h .
ill-suited for long term contracts, leaving only marketsttwi Intact: that wind power production, where present, impacts

relatively short time between gate-closure and deIiveryaasthe prices to such extent that it should be accounted for in a

realistic option for selling the production. Inevitablyetprices forlecahstlng moddel for EIGﬁr'C'ty SF’O_t pnceg.d | deled
at these markets are affected by this additional supply{T3]— n the second stage, the remaining residuals are modele

The impact of renewable energy is superimposed on alrealﬁS)Tg we_ll_lhknown rcr;oldels from tgg_t_t'mz setr)lles analy5|? II-I|t-|t
existing price features such as non-stationarity, petitgdli erature. These models are an addiive double seasonal Holt-

Winters model and a recursively estimated seasonal AR model
T. Jonsson is with ENFOR A/S, Harsholm, Denmark and the DepartmeﬁII models are estlmateq under robust criteria in order t_o
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describes the expected spot prices on a day-ahead basis.
Although the authors recognize proper modeling of forecast
uncertainty and price spikes as paramount in forecastin
electricity spot prices, the empirical features of the gsiare
such that appropriate uncertainty or spike modeling witlilga
comprise a full paper of its own. The model presented in thiss
paper can however be combined with a price spike modeg
(e.g. those presented in [16], [17]). Same goes for a model
for predictive densities such as the ones described in [d] an | | | |
[18]. 2009 2010 2011 2012

The context of the empirical results presented in this paper
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is the Western Danish price area (DK-1) of the Nord Pool's & |
Elspot market. Operational data for the period from Novembe = _ |
1st 2008 until December 31st 2011 are considered and used é £
evaluate the model’s day-ahead forecasting skill. Funtioee, g o |
the value of the time-adaptivity and robustness is illusttdby g S
comparing the performance of the proposed approach againggt o |
its time-invariant and non-robust counterparts. Despiteu$ & & |

being on this market only, the fact that results on the infbeen

of wind power forecasts on electricity prices similar to gho

of [3] have been obtained for other areas, e.g. Germany and
Spain [5], indicates that similar forecasting methodologuld
be applied successfully in the context of other markets.

The remainder of the paper is structured as follows. The

market and data on which the empirical work is based at@ both Norway and Sweden to the north and Germany to
described in Section Il. Section Il presents the models afige south. As of August 20, 2010 the DK-1 area also has
Section IV the obtained empirical results. Finally conahgd a 600 MW link to the Eastern Danish price area (DK-2).

T T T T
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Fig. 1. Time series plots of the spot prices throughout thesicened period.

remarks are given in Section V. Furthermore, the area has a large share of its annual elactri
consumption (about 25%) generated by wind turbines.
Il. EMPIRICAL BACKGROUND The data set used consists of hourly observed area prices

_ _ ) along with forecasts of both wind power production and

Elspot is a day-ahead market for physical delivery of electrconsumption in the area. Both forecasts are issued before
power, operated by Nord Pool Spot AS [19] in the entirgate-closure and have a temporal resolution of 1 hour. The
Scandinavia (Denmark, Finland, Norway and Sweden) anddBserved prices are taken from the website of the Danish
Estonia. transmission system operator (TSO), Energinet.dk ( [Z0{g

On Elspot, contracts for next day physical delivery argaq forecasts are the ones made publicly available by Nord
traded for hourly periods. Prices are set as the intersectipgg| through their website ( [19]). The wind power produstio
between the aggregated supply and demand curves for efgcasts however stem from a statistically based wind powe
hour of the day, right after gate-closure at noon. The iB®rs prediction software [21]. Time series plots of the prices fo
tion of the curves representing all bids in the entire markgie considered period are shown in Fig. 1. Whereas the top

region defines the system price. The system price, in additigot shows the full series, the bottom one shows the sereis on
to serve as reference for financial contracts, is the price fikcale truncated a 0 and 800 DKK/MWh.

which physical contracts are settled if transmission cipéc
sufficient throughout the entire region.

Due to limited transmission capacity however, both between ) ] )
and within the member countries, the market region is dividé\- The Rationale Behind the Proposed Modeling Approach
into several price areas. If the scheduled flow between priceAs more than half of the annual electricity production in
areas exceeds the corresponding transmission capa@ty, ane Nordic region is hydro power based [22], the prices at the
prices that differ from the system price are calculated. Grhs Elspot market are inevitably dominated by the water stock in
occasions, the area prices are identical among areas tat fthe hydro power reservoirs in Norway, Sweden and Finland.
sufficient capacity on their interconnections. Areas onheadhis stock however varies relatively slowly compared to the
side of a congested connection however have different griceesolution and lead-times of the desired forecasts. Indeed
The area prices are the ones at which contracts for physitta fact that data for these are published with a resolution
delivery are settled. of one week should be enough to convince one that such

The context of the empirical results presented in the follovdata has no explanatory value in day-ahead price forecasts
ing is the Western Danish price area (DK-1) of Elspot. Theith a resolution of a single hour. Instead, the impact of
area comprises Jutland and Funen along with the islands wibst water stock appears as a slow drift in the price series
of the Starebaelt channel and has relatively strong cororecti with this resolution. Because of this, it is decided only to

I1l. M ODEL FORSPOT PRICES



implicitly include the impact of hydro stock, along with eth where 8;(-) is a function of a set of explanatory variables,

slowly varying fundamentals such as fuel prices, by adaptiw,., ande; is a noise term, centered and a with a finite vari-

estimation of the model parameters. ance. Thus, the model (1) is a non-linear and non-parametric
In [3] the ratio between predicted wind power productionegression model.

and forecast consumption is shown to affect the area spoiThe function@(-), is approximated using polynomials by

prices in DK-1 substantially. On a similar note, forecasnavi fitting a linear model at a number of distinfitting points

power production is shown to appear in the supply functiodore specifically letu = [ u; wuy |7 denote a particular

as a stochastic threshold in [4]. The reason for wind powéiting point and letp,(u) denote a column vector containing

to have such a strong influence on prices is owed to hdhe terms in the corresponding polynomial of orderHere

it fundamentally differs from most other energy sources thd = 2 has been chosen after trials withe {1, 2, 3} yielding

significantly contribute to the supply. Whereas conventionga(u) =[ 1 u; us uf wjus w3 ]7.

power plants can be scheduled to steadily produce a certaifNow define

amount of energy over a longer period, wind turbines litgral T

produce as the wind blows. In addition, the absence of fuel Pup = [ Guit o Duge ] @

costs allows wind turbines to produce at a marginal costeclog column vector of coefficients such that the model

to 0. This low marginal cost causes wind power to enter the (5) .

supply function to the very left and thereby horizontallyfish T =Py (Ue)Pu + € 3)

the supply function. o o describes the prices in the close vicinity of the fitting pain
The stochastic fuel availability moreover implies thatgbo wheree, is a noise term, centered and with a finite variance.

responsible for bidding wind power into the market have to e parameters in (3) are estimated using recursive and

rely on production forecasts for their decisions. As a censgyp st weighted least squares. That is

guence, the supply function comprises the production &stsc .

available at gate-closure and not the realized volume. For ~ . s 2

this reason, forecasts of future production are the apj@aipr Pu.t = argflflnz)‘t wu(ts) (g (€5, 7)) “)

form of wind power for any inference on its relation to the ot

prices. This aside, forecasting in practice has to be basedwheree, = 7% — pI (u,)¢,., and0 < A < 1 is a forgetting

predictions of both wind power production and load. Thuactor that exponentially discounts observations overetim

following [23] the model is entirely and based on forecasturthermoreuw, (u,) is a weight, assigned to observatian

values for the explanatory variables. as a function of its distance to the fitting point Finally,
In contrast to [3] the two explanatory variables enter the(-, ) is the Huber influence functiof27], defined as

former model step individually and not as a ratio. This is i

because that formulation was found to yield better forecast g(et, 7) = sgrlet) - min {le;|, 7}, ®)

of the prices. wherer is the cut-off value or the maximum influence a single
In [35] lagged values of measured load are found to hag®servation is allowed to have on the estimate.
significant explanatory power in a model for the spot prices. The weights are assigned as

Past demand has however no direct effect on the current spot

prices. It is therefore likely that the effect seen in [35] is wy(uy) =W <M> (6)
owed to that in the absence of actual load forecasts the dagge h(w)

demands serve as implicit prediction of the load. The highhereW(.) is a function taking non-negative argumerjts||
number of lags, especially seasonal ones, found significantdenotes the Euclidean norm ahk) is the bandwidth applied

[35] support this conclusion. Thus with access to an actugalthe fitting pointu. Following [24] and [25] a tri-cube kernel
load forecast, no attempt to include past demand in the moggelsed to determine the weights. That is

was made.
(1—2%)3 if z€[0;1)
W(z) = .
0 otherwise

)
B. Spot Price as a Function of Forecast Wind Power Produc-
tion and Load which entails weights between 0 and 1.

It can be shown (see e.g. [26] or [28], Ch. 11) that

An excellent general description of the methodology an[ﬂe adaptive parameter estimates in Eq. (4) can be found
estimation procedure used to describe the spot prices aﬁe@ursively as

function of wind power and load forecasts is given in [24

(without recursivity) and in [25], [26](including recuvsty and Gui = Pus1 + Wy (we) Ry ip2(ui)g (ege—1,7)  (8)
robustness respectively). However, in order to make thigpa
self-contained, an outline of the method is given hereptted where (9) . ~
to the application at hand. etft—1 =T — Py (Ut)Put—1 9)
Let a model for the spot price at time wt(s), be denoted gnd
as dgles, T
w9 = 6, (ur) + < P =M bt YDt ). 0



Abruptly changing parameter estimates are avoided by falpot price for timet + k£ issued at timet. Every day at
lowing [25] and defining the effective forgetting factor; as noon, forecasts are issued for the period from midnight to

dgles, 7) midnight the following day and then no forecasts are made
A=1-(1- )\)wu(ut)Tt’ (11) until noon the next day, when forecasts for the same lead
_ €t times are generated. This implies that forecasts for iddi
and subsequently update (10) so it becomes hours of the day always have the same lead time. This scenario
. dg(es, 7) - resembles the practical one and these forecasts are teiaged
Ryt =NRyi1+ wu(ut)iaet p2(ui)py (wi). (12)  ghead forecastsn the following and noted a§gj(t). This
Finally, 0, (u) is estimated by notation implies that f(()é[)an obs%\)/ati@ﬁs) the corresponding
R o day-ahead forecast is); ,, = %t|t713 if ¢t corresponds to the
0 (u) = ps (u) Py, (13) first hour of the day. If the observation is from the second

hour of the dayg?gjl(t) = %Ei)_w and so forth. The optimal

and estimates for other values@f than the fitting points are ]
values of the tuning parameters are then found as

found by linear interpolation.

In contrast to fitting 24 hour-specific models, a single v
conditional parametric model is estimated for all hours of X .
: . . X o A = RMSE, ST 14
the day simultaneously. The rationale behind this choice is . aryg,ﬂm DA AT) (14)

twofold. First the apparent diurnal seasonality in the ggics
mainly caused by that of the demand. Thus the seasonalitynifere
implicitly accounted for by the inclusion of the load forsta
as an explanatory variable. Secondly, the consumptiorenpatt 1 S) (S
is in most cases quite similar among consecutive hours.,Thus RMSEpa(7, A, 7) = N Z (”t( - 77532&@)) - (19
fitting hour-specific model in many cases leads to the exatusi =t
of observations of similar circumstances from neighborin
hours. The absence of obvious regime shifts in the consuné:)- Residual models
tion pattern makes alternative segmentation also prolilema The purpose of the model's second step is to account for
Besides, all data split results in longer time passing betweautocorrelation and seasonal patterns that are not egplain
observations prompting a lower forgetting factor and thgre by the load and the wind power. Out of the models tried for
less stable parameters over time. So the dynamics of the sipet second step of the model, two models turned out to be
price most local in time along with seasonalities not owesliperior to the others and yet quite compatible. These reodel
to the demand and wind are left to be accommodated in thee seasonal AR model with robust and adaptively estimated
second model step. A consequence of adopting this fittiparameters, and a seasonal additive Holt-Winter moded, als
procedure is that the results from the former step are ordgtimated under a robust criteria.
to be viewed for model building purposes and not evaluatedThe autocorrelation function (ACF) and the partial autecor
on their own. This is because the missing diurnal variation telation function (PACF) for the residuals from the first rebd
the function will inflate the performance measures. step are shown in Figure 2. Despite that the residual series
For estimation, the independent variables, i.e. forecast w is not completely stationary, its ACF and PACF are used to
power and load, are scaled such thate [—1,1]Vi using identify potentially appropriate orders of AR and MA terros t
the range of each variable in the training set to perform theclude in second step model. Afterwards a survey of differe
scaling. Fitting points are then chosen as 24 equidistae$ ormodel orders is conducted in order to determine the most
in each dimension. It was decided not to optimize neither tha@propriate structure. From this survey, a model on the form
position of the fitting points nor their number since results T
from a few different sets of fitting points indicated thatldt eorh = 2 (K)Be(k) + vits (16)
would be gained from their inclusion in the optimizationc8u s tound to be appropriate fdr < 24. The vectorsz; (k) and
optimization is however possible, e.g. by methods preslentBt(k) are defined as
in [29] and [36].
The model parameters are estimated using a nearest neigh-z (k) = [ 1 €t—1 €t—2 17)
bor bandwidth which implies that the actual bandwidth \&rie K Eith—24 Etrk-48 Etik_168)0
with the local density of the data. That is, the bandwidth for T
each fitting point is chosen such that a certain fractiaf the Bik)=[ Poes Prex - Borw |, (18)
observations fulfillf|u, — u|| < h(u). The actual bandwidth where in turns; ; ;. are parameters to be estimated recursively.
for each fitting point is found empirically from the trainisgt. Moreover,s; is defined by Eq. (1) and, is a new noise term
Put differently, the bandwidth for each particular fittingipt  also centered and with finite variance. Put differently,ssafe
is set as the-quantile of the Euclidean distances between thgiodel parameters are estimated for each lead time, relevant
fitting point and the observations in the training set. for a day-ahead forecast, that correspond to the lagge@walu
The actual values ofy, A and 7 are selected by a leastof the forecast error from the first model steg). (Obviously
squares optimization of the forecasts issued at noon the day k = 23, ¢;,_; = £, 1_24 and correspondingly fok = 24,

before delivery. More precisely Iétfﬂlt denote the forecasts;, = ¢;,,_o4. In these special cases, the dimension of the




o
i
[c-) © |
[=) o
© L
g <
LL e 2 S |
<« g
S =
g oo
N
(=)
Q m'\"ﬂm"THT\T'\ﬁfTTH’T'\T'TH”TW” TPl | e i i [ vt Futalot e
o o R e [ Ay LA i A i s T
S
T T T T T T T T T T
(o] 50 100 150 200 (0} 50 100 150 200
Lag Lag

Fig. 2. ACF (left) and PACF (right) for the residuals arisifigm the first model step.

design matrix is reduced so that each observation is omhere then’s are smoothing parameters to be estimated. Once
represented once. Other model structures, such as ingludine different terms of the model are updated, thetep ahead
a moving average term were considered but the one héveecast is found as
describes was found to be the most appropriate one. N
The parameter estimates are obtained similarly to what vkl = Ht + Dir—2a + Wipr—168- (26)

deady has been described for the first step of the mOdelﬁ{e inclusion of a trend term in the model was considered but

N t the resulting improvement in forecasting skill was found&
B = argmin » X% (g(vy,7))?. (19) insignificant.
S — Writing Eq. (23) - (25) on their error correction form and

wherev, = ¢, — 2I'8,_1, g(-,-) is defined by Eq. (5) and adopting the formulae for robustness from [33] yields
0 < A < 1 is a forgetting factor as before. Hereafter, the

AR model with these parameter estimates will be referred to pe = pur o+ g (v, 7) 27)
as RLS-AR. The difference between the two procedures is Dy = D24 + apg(vr, 7) (28)
merely that the kernel weightsy,(-), are omitted from all Wi = Wi_168 + awg(ve, 7) (29)

the equations so that Eq. (8) and (12) become R .
where, as beforey; = ¢; — &, andg(-,-) is the Huber

B = Bi1+ Ry zeg (ve,7) (20) influence function given by Eq. (5).
R — V'R 1+ ag(ve, 7)o 1) For both models, a single set of tuning parameters was
¢ [ Oy b= estimated for all lead times. As for the first step, the patanse
respectively, where are optimized with respect to the day-ahead RMSE as formu-
Dg(vy.7) lated in Eq. (14) and (15). Certainly these parameters could
Af=1-(1- )\)g#, (22) be optimized for each hour of the day. A search for initial
Iy values indicated however, that improvement in forecastkildy

The Holt-Winters model was initially introduced in [30]achieved by doing so would only be marginal. This choice
for one seasonal cycle while extension to multiple cycles ¢foes not in any way alter the validity of the model and the
described in [31]. The model that eventually yielded thet begsults obtained but only indicates that some of the parmmet
prediction skill fore; only has a single daily seasonal cyclemight by slightly sub-optimal.

However since the benchmark model fmﬁ’s) was found to
benefit substantially from including a weekly seasonality a
well, a formulation for a double seasonal model is given
here. The transition from a double seasonal model to a singleThe parameters in the two model steps are estimated se-
seasonal one merely involves omitting the second seagpnatjuentially based on the first 14 months of the data set or from
from all equations. November 2008 and through December 2009. The remaining

The purely additive form of the Holt-Winters model istwo years of data are then used as an independent test period.
used (see e.g. [32] for a comparison between additive aRdr estimation, prices above 800 DKK/MWh and below 0
multiplicative Holt-Winters models). The model contains &®KK/MWh are excluded to avoid unstable parameters. Per-
mean termy,;, and two separate seasonal indicBsandW,. formance estimates presented in the following are based on
The period ofD; is 24 while that ofiV; is 168, corresponding all observations though.
the within-day and within-week seasonalities respedtival In order to illustrate the contribution from different faats
standard non-robust Holt-Winters model can be denoted a®f the model, different reference models are estimated and

- their RMSE and Mean Absolute Error (MAE) compared to
He = o (&0 = (Deza + Wiaes)) + (1= ap)pu (23) o oee proposed model. The RMSE and the MAE are
Dy =ap (er = (ur + Wicaes)) + (1 —ap) Diaa - (24)  poth presented in two versions:

Wi = aw (0 — (e + Di—24)) + (1 —aw) Wicies - (25) 1) On the price’s real scale (in DKK), and

IV. EMPIRICAL RESULTS



TABLE |
ESTIMATED PARAMETERS AND FORECASTING SKILL FOR THE FIRST MOEL STEP AND THE REFERENCE MODELS

Explanatory Estimation In-sample Out-of-sample
Variaples(S) Setup A - RMS(S)E MA(S)E RMS(S)E MA(S)E
[DKK]  [=]  [DKK]  [-] [DKK] [-] [DKK]  [-]
geg(‘)‘[)ﬂ‘:f 0.8529 0.9877 5567 51.10 0.663 2833 0705 50.89 0.676 535.1.732
Wind Power .
& Load Eﬁlc“rs"’e 0.9018 09901 — 5233 0679 29.84 0742 51.85 0.686 35.52 420.7
Forecasts Timye-
Time: 00821  — — 5205 0676 3207 0798 10154 1.349 86.17 1.799
invariant
Load Recursive 7087 09831 53.38 56.24 0730 3066 0763 5879 0.781 939.1.816
Forecasts & Robust

2) as a skill relative to the daily persistence (RMSSE arfthlf the estimated variance. The set of external varialiias t
MASE). yielded the best forecasting skill was the one with the log-
That is, the measures are scaled by the corresponding resastifnsformed wind power and load forecasts for which results
for a daily persistence forecast as suggested by [34]. Mckee reported in the following.

formally, the RMSE is scaled by The fitting points for the former model step are chosen as 24
equidistant ones in each dimensions thus yielding a gritiiéf
1 Nper (s) (5) \2 equidistant fitting points in total. For each point, the ¢iocadnt
Nper — 24 ) (”t —7Tt—24) (30)  vector, ¢, is initialized by setting all its elements t0.1.
=25 The corresponding matrix inverse variance-covarianceixat
and the MAE is scaled by Ry, is chosen as a diagonal one with non-zero elements as
N,., 109, Thereafter the first 1008 observations are taken for
1 zp: 28 _ (9 (31) initialization and are excluded from the performance measu
Nper — 24 = k -2 Hence the tuning parameters are optimized in context of the

here N is th b ¢ ob i in th Igreviously mentioned training period apart from its first 42
WRETE Aper 1S the NUMBEr OF observations In e Samblgays - pyring the initialization period, the robust crigelis

for which the measure is calculated. This scaling yields rBlaxed in order to obtain frequent updatesyf This is nec-

relative error measure that is unbiased towards forecgastlélssary because of the poor initial guesses for the coefficien

ability of high and low prices and does not call for any data The parameters are optimized as described in the previous
trimming due to the prices being zero or close to that. A P P P

more detailed discussion on the RMSSE, MASE and forecasée:[lcnon’ using the quaspNevvton_ Broyden-Fletcher-Gobafa
: . anno (BFGS) method. The estimated parameters are shown
accuracy measures in general can be found in [34].

For the first model step the in-sample and out-of—sampi Tgble I along with the corresponding in- and out-of-saenpl
performance is compared to that of: E. o ) ) i

1) its time-invariant and non-robust counterpart The results indicate that the inclusion _of YVInd power

2) its non-rabust counterpart ' forecasts a_nd the recursive parametgr gsuma’uon are worth

3) a model estimated in the ’same manner but only takithe effort since the top two models §|gn|f|cantly outp.grform
load as an explanatory variable ¥ bottom two. Especially the recursive parameter esiimat

) i ) t ) seems to paramount since the performance of the time in-

Finally, the forecasting skill of the combined models is €0M,5riant model degrades excessively during the test petiod.
pared to the that of terms of performance, the benefits of the robust estimatien a

1) two seasonal persistence models, one with a daily pess obvious. However, given the spiky behavior of the spot
riod, and another with a weekly period, prices, it is generally sound to robustify the estimationgess

2) the previously described Holt-Winters and RLS-ARn order to protect the model from abrupt changes caused by
models applied directly to the spot price series. a single spike. In light of the varying volatility of the peis,

3) a series of 24 ARIMAX models, one for each hour ofnaking = recursive, as described in [26] and [37], could be
the day with the forecast wind and load as externahore appropriate. No such efforts were made for this paper
regressors. though.

In line with such type of models in the existing literature A forgetting factor of A\ = 0.9877 translates to that
(e.g. [8], [35]) the ARIMA models are fit in terms of 1/(1 —0.9877) = 81.3 latest observations are effective in
log(w§5)+1000). The model order for each hour is decided othe parameter estimation which corresponds to around 3.5
by minimizing the Bayesian Information Criteria (BIC) [36]days. Owed to the locally weighted and robust estimation
for the training period. The external variables are conside however, the effective forgetting factoh*) is somewhat
both on their original scale and log-transformed as suggeshigher and varies between fitting points. In [25] a procedure
by [35]. After calculating the predictions, they are tramrgfied to estimate the actual memory of the model is proposed.
to the original scale by the exponential of the predictiomspl Following this procedure and averaging over time as well
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power production and load at noon on September 1st 2009

Surface plot of the spot prices as a function of thedast wind Fig. 4. RMSE for individual lead times during the test periadDKK (left
axis) and as percentages of the average price for the peigit &xis).

] g o
as the 576 fitting points yields a mean number of effective g - 8o o
observationsj; = 281.8 hours and a corresponding averageE " o % ;%%;
effective forgetting factor o = 0.9965. S 81 if%%%%% % i %% I o%%
The function which the model approximates is shown for% s 8820 o3 °ece
one instance in Figure 3. This function is then updatedt T4 o °° oo 8
each day at noon by adjusting the model's coefficients tgg¢ 8 1 ° °°
observations from the current day. Subsequently, forecast <|> .
calculated from next day’s input forecasts, i.e. the wind/g@o s1 o990 OO0
and the load forecast. This is done by bilinear interpofatio 01:00  05:00  09:00 13:00 17:00  21:00
between the four fitting points surrounding the input fostsa fimeofbay _ _
Fig. 5. An hour-by-hour box plot of the spot prices during thet period.

In other words, the price forecast for a set of input forerasr\lhiskers are placed at 1.5 times the interquartile range.
for a given houru;, is found as the corresponding point
on the linear plane joining the four nearest fitting points.
Alternatively generalization to values other than fittingirds  step and further supports what already has been said about
could be done non-linearly, e.g. by one of the multidimenalio recursive robustification.
spline techniques presented in [36]. In light of the high bem  The forecasting skill of the Holt-Winters and the RLS-AR
of fitting points used here, linear interpolation was howevenodels applied to the residuals of the non-parametric model
deemed adequate. is also clearly superior to that of the models applied to the
The initial values for the coefficients3,, in the second spot prices directly. As shown in Figure 4, which plots the
step AR model are found from a standard AR model, i.e. naburly residual RMSE for the bottom four models in Table II,
recursively estimated, using observations for the first dsd the superiority is a result of the two step models consiktent
of the data set. The inverse of the corresponding varianegstperforming the other models almost throughout the entir
covariance matrix is taken d8,. For the Holt-Winters model, day. It is only in the first hour of the day that the benchmark
an initial value for theu-term (u) is found as the mean priceRLS-AR model performs similarly to the two-step ones. This
during the first 42 days of the training period. The seasorniglbecause the forecasts for these hours are the ones with the
terms are initialized as the difference between and the shortest lead times and thus based on very recent obsersatio
average price for the individual hours during the same 42
days. In the same way as for the first step, the first 42 days ofrhe performance varies somewhat between hours but seems
observations are disregarded in the optimization of thengin to coincide with the severity of the price spikes that oocedrr
parameters. The benchmark models are initialized in theesafuring the test period. This can be seen on the box plot in
manner, only using the spot price series instead of theuaksid Figure 5 where the spot price distribution within each haur o
from the former step. the day is illustrated. The hours with the highest RMSE are
Again, least squares estimates of the parameters are sowgghbng the ones when the most extreme prices occur.
yielding the ones summarized in the second column of Ta-The model's forecasting skill during normal weekdays,
ble Il. The corresponding in- and out of-sample residuaeekends and public holidays is listed in Table Ill. In terfis
RMSEs and MAEs (in DKK and scaled) are given in thene unscaled measures, the performance seems to vary quite
remaining columns along with that of the benchmark modelsubstantially between different types of days. Howevee, th
Apart from the obvious fact that the proposed modelserformance measures relative to that of the persistenee fo
drastically outperform the more naive benchmarks, theetaldast reveal that much of this variation is due to the altémgat
reveals that the decaying unscaled performance between phiee volatility during the different day types. One has &ab
training- and test periods may, to a certain degree, be iegula in mind though that the unbalanced sample sizes between the
by the somewhat greater volatility of the prices during #& t different categories make this kind of comparison unrédiab
period. This applies to both the full model and the interratali That is, the small number of holidays makes performance



TABLE Il
RMSEFOR THE DAY-AHEAD FORECASTS

Parameters In-sample Out-of-sample
Model RMS(S)E MA(S)E RMS(S)E MA(S)E
[DKK] ~ [-]  [DKK] [-] [DKK]  [-]  [DKK]  []
,\P/g?]d — 7561 0981 4550 1132 9545 1268 69.75  1.456
Daily — 77.02  1.000 4022 1000 7530 1.000 47.90  1.000
per5|stence
Weekly
Bench- persistence — 7437 0965 4169 1037 79.83 1060 5242  1.094
marks ARIMAX — 69.20 0.898 3593 0.894 6421 0853 4326  0.903
RLS-AR [A, 7] = [0.9889,92.78] 50.03 0.725 31.27 0808 5587 0.742 3773 0.788
N [a;L>aD:aW7T]:
Holt-Winters [0.0116, 6.0903, 01009, 112.39] 52.88 0756 31.73 0.820 57.81 0.768 40.34  0.842
Two RLS-AR [\, 7] = [0.9915,240.63] 4755 0.680 27.95 0.722 4815 0.640 3277 0.684
M [QM,QD,T] =
step Holt-Winters [0.0045,0.1245, 32.9§] 4681 0.669 27.23 0.704 49.07 0.652 33.66 0.703
TABLE Il
OUT-OF-SAMPLE PERFORMANCE OF THE PROPOSED MODEL DURING V. CONCLUSIONS ANDFUTURE WORK
WEEKDAYS, WEEKENDS AND HOLIDAYS SEPARATELY A two step methodology for day-ahead forecasting of
electricity spot prices has been presented. Whereas the first
Model Day Type [DKE;V'S(S)['_E] [DKK]MA(S)[_F] step accounts for the prices’ dependence on forecast load
Weokd 1494 0637 3103 069 and wind power production, the second step accommodates
eekdays . . . . . . . _ L.
RLS-AR Weekends 5174 0635 3490 0654 Autocorrelation and seasonalities. The time-adaptiveiver

Holidays ~ 73.79  0.683 50.52  0.715 of the model was shown to comfortably outperform its time-
Weekdays 4439 06287 3067 06874 invariant counterpart. Hence, adaptive parameter estmat
Holt-Winters Weekends 5295 0.650 35.86 0.672 must be concluded to be relevant for the modeling of this
Holidays —~ 74.54  0.690 5205 0.737  phenomena. In terms of forecasting skill the interest of em-
ploying the robust approach is less obvious. However, the
robust estimation protects the model's parameters frompbr
changes, caused by few excessive spikes. Thereby the model
) _is enabled to follow the progress of the average prices more
assessment during these days vulnerable for any eXtrmyd'nclosely without manual inference. The time-varying price

circumstances. volatility suggest though that robustification should bedma

As previously mentioned, the explanatory power of theCursive. N _ N
input forecasts used in the model's first step is owed to theirQUt-0f-sample empirical results, obtained by mimicking
reflection of the volumes bid to the market. The forecastiff@ctical circumstances, indicate that the model is wetegu
skill of the model can therefore be expected to be affect&®f Practical use - both in terms of methodology and fore-
by how closely the input forecasts are related to the volurf@Sting skill. In order to obtain complete forecasts of the
cleared on the market. Increased quality of the input faec&!€Ctricity spot prices, the model here presented should be
will therefore not necessarily improve the price forecasfEcompanied by a model for prediction intervals. Given the

unless resemblance with the bidding behavior is increased"8Sults of [3], such intervals would most likely be condikid
well. upon fundamental factors, e.g. forecast wind power praduoct

and load. Whether modeling of higher order moments also

Overall, there seems to be little skill difference betwe®n t requires time-adaptivity will be an interesting questian t
residual Holt-Winters and the residual RLS-AR models. lanswer. Given the characteristics of the prices howevee-ti
light of the fact that both mainly rely on the same informatioadaptivity is likely to be as essential in such models as it is
from the past this is understandable. Since both models &ee.
relatively easy to implement, choosing one out of the twsthu Even though the share of wind power in the generation
comes down to personal preferences of the one implementpaytfolio is relatively large in DK-1, accounting for preted
the model. The Holt-Winters model has the advantage thougind power production is likely to be beneficial in other
that price spikes are less likely to be reflected in forectsts markets as well. For instance the findings of [5] hint that the
the following days since it does not explicitly use previoumethodology presented here could be successfully appied t
values for prediction. For the same reason, the Holt-Wintethe Spanish case. Here the fundamental difference between
model is more robust operationally since missing obsesmati wind power and conventional power plants plays an essential
will only affect the model update but will not prevent predicrole. In addition, the EU’s target of having 20% of its energy
tions from being issued. consumption produced by renewable sources by 2020 and sim-




ilar initiatives in the USA imply that price forecasting rhetls [16]
accounting for wind power production and renewable energy
sources in general may have a more widespread applicabi[’gy]
in the near future. In this context the inclusion of e.g. salad

i

wave power in the model parallel to their emergence would
interesting. Although both theoretically possible and hatd

to implement, the inclusion of 1 or 2 more variables in the
model calls for a more cautiously chosen variables or merdé?!
of them in order to ensure frequent enough updates of tﬁg]

parameters in all fitting points.
[21]
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