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Fig. 6. Optimal bidding strategies and energy curves of battery storage.
(a) Base case considering PBR payment and cycle life. (b) Case without
considering PBR payment. (c) Case without considering cycle life.

bidding strategy and corresponding energy curve of battery
storage in the base case are shown in Fig. 6(a). The results in
the other cases when PBR payment or battery cycle life is not
considered are shown in Fig. 6(b) and (c), respectively. The
blue, orange, and gray bars represent energy, spinning reserve,
and regulation bids, respectively. The length of bar denotes the
amount of bid. The green curves represent the energy levels
in storage at different hours.

In all three cases, regulation capacity dominates most of
the day. When regulation prices are comparatively low, battery
storages purchase in the energy market to balance the energy
loss, which can be observed by comparing Figs. 5 and 6.
The regulation capacity bids must be reduced at that time
to make charging possible, and the spinning reserve can be
supplied then.

The impact of considering PBR payment on battery stor-
age’s optimal bidding strategy can be observed by comparing
Fig. 6(b) with Fig. 6(a). There are more spinning reserve bids
and fewer regulation bids in Fig. 6(b) compared with those in
Fig. 6(a) during some hours. This is because the income from
the regulation market is comparatively lower without consid-
ering PBR payment, making increasing of the spinning reserve
bids profitable.

Embedding battery cycle life into bidding strategy optimiza-
tion has a significant impact on the optimal bidding strategy
of battery storage, which can be clearly observed by compar-
ing Fig. 6(c) with Fig. 6(a). It is beneficial for the battery to

TABLE IV
DEVIATIONS IN BIDDING STRATEGY

TABLE V
BASE CASE RESULTS

TABLE VI
RESULTS OF A COMPARISON BETWEEN THE BASE CASE AND CASES

NOT CONSIDERING PBR PAYMENT OR BATTERY CYCLE LIFE

slow degradation by not providing regulation service in some
periods such as hours 1–6 and 20 in the base case as compared
to the case of not considering battery cycle life in optimization.
We summarize the hourly deviations in the optimal bidding
strategy in Table IV, averaged across all 24 h in the day. The
relative deviations of energy, spinning reserve, and regulation
bids are 97.6%, 68.2%, and 57.4%, respectively.

Table V summarizes the cost-benefit analysis results of the
base case. We can see that the income from the PBR market is
the major income of battery storage. Income from providing
the spinning reserve also contributes over 10%. Income from
the energy market is negative, as the battery has to purchase
electricity to balance energy consumption and loss. This indi-
cates that in a market with a PBR mechanism, battery storage
would be deeply involved in ancillary service markets, espe-
cially the regulation market, while taking advantage of the
comparatively low price in off-peak periods to compensate for
the energy loss in providing ancillary services. Under the opti-
mal bidding strategy, the battery could make a 26.3% profit
in total, and the daily equivalent 100%-DOD cycle number is
limited to 3.42 to keep cycle life no less than ten years.

Table VI compares the profit and cycle life results of the
three cases. The results indicate that considering PBR payment
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Fig. 7. Sensitivity analysis on cases with different battery durations.

increases the battery storage’s gross income and profit rate
by approximately 25%. As for considering battery cycle life,
though the daily income is lower, the profit rate is improved by
nearly 30% because the battery’s life is extended by limiting
battery’s cycling strategy. This improvement might be even
more significant when the battery has a smaller kP or number
of 100%-DOD cycles to failure.

The accuracy of the proposed decomposition method is val-
idated by comparing the daily equivalent 100%-DOD cycle
numbers calculated using the simplified decomposition method
and the original method, summarized in Table VI. In all
the three cases, the deviation ratios in the cycle number are
below 5%. Most of the deviations come from the hours when
the capacity bid in the regulation market is not much larger
than that in the other markets, such as hours 8, 9, 11, 15, 17,
18, 20, and 24.

The comparison results above prove that the proposed model
considering the PBR mechanism and battery cycle life pro-
vides a different but more effective bidding strategy for storage
owners, as well as a more realistic and accurate cost-benefit
result for investors.

C. Sensitivity Analysis

The energy capacity of battery storage has an impact on its
total profit. We examine cases with different battery durations,
as shown in Fig. 7.

The result indicates that the optimal battery duration is
approximately 1.5 h, with the largest profit rate. For batteries
with a duration of less than 1.5 h, the profit rate increases as
the duration increases, as shown by the red line in Fig. 7. This
is because the energy constraints’ limitations on the profit are
relaxed when the storage has a longer duration. Additionally,
the DOD of a certain bidding strategy is smaller for a battery
with larger energy capacity, which allows for a wilder cycling
strategy and thereby a higher daily income, while maintaining
the same battery cycle life as the blue line in Fig. 7. These
two factors that contribute to total profit are less significant for
batteries with durations of more than 1.5 h. The cycle life has
become even larger than the float life and thus has no impact
on total profit. When we continue to raise the energy capacity,
the increase of the investment cost dominates and causes the
decrease in the profit rate.

The battery storage parameters concerning cycle life also
have significant impact on its profit. Fig. 8 presents how
the profit rate changes with variations in kP and the

Fig. 8. Sensitivity analysis of profit rate with different kP and Nfail
100.

number of 100%-DOD cycles to failure Nfail
100, assuming the

same investment cost. A larger kP or Nfail
100 means a higher

tolerance in frequent and shallow cycles for fast regulation
service and usually brings higher profit. For the same battery
technology, a larger kP or Nfail

100 requires more investment cost,
so that investors need to consider the tradeoff between the
extra profit and investment cost. In the deep red area of Fig. 8,
improvement of battery cycle life performance is unnecessary,
as it brings no additional profit.

VI. CONCLUSION

Better bidding and operating strategies in power markets
could remarkably improve the prospects and economic via-
bility of battery storage. This paper proposes a model for
investor-owned battery storage to optimally bid in power mar-
kets implementing a PBR mechanism. Considering providing
fast regulation service largely affects battery life, a battery life
model and a simplified battery cycle life calculation method
are incorporated into the profit maximization model to take
into account the battery life’s impact on the total profit.
Numerical results suggest that considering the PBR mecha-
nism and battery cycle life could significantly improve battery
storage’s overall economics. Batteries with different durations
and cycle life parameters are compared in sensitivity analyses,
which could help decide its optimal configuration.

The regulation market is small compared to the energy and
reserve markets. One remaining issue for future research is
how to decide a battery storage’s bidding strategy when it is
no longer a price-taker in the regulation market.
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