


What to look for in the data?

What do we have here...?

measurements, i.e.,

power measurements (yt) - Remember that only past measurements can be used!

weather forecasts, i.e.,

wind speed (ût+k|t)

wind direction forecasts (θ̂t+k|t)

temperature forecasts (T̂t+k|t)

different variations of those could be used since the relationship between meteorological variables
and power is nonlinear, e.g.,

power of wind speed: û2
t+k|t , û

3
t+k|t , etc.

harmonics of wind direction: cos

(
2πθ̂t+k|t

360

)
, sin

(
2πθ̂t+k|t

360

)
, etc.

we also know the hour of the day (ht), or the lead time k, which could be useful... (though not
used here)

Let us call all these variables xj (j = 1, . . . ,m), and also nickname them “features”
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We can still write a linear regression...

Remember that a linear relation between the xj variables and y can be written as

yi = β0 +
∑m

j=1 βjxj,i + εi , i = t − n, . . . , t

(or, equivalently: yi = β>xi + εi )

where
yi is still your response variable (say, wind power generation) observed at time i

xj,i is the corresponding value for the jth explanatory variable (j = 1, . . . ,m, example wind speed
forecast used as input)

βj is the model parameter for the jth explanatory variable

εi is a noise term, which you may see as our forecast error we want to minimize

This linear regression model can be reformulated in a more compact form as

yi = β>xi + εi , i = t − n, . . . , t

with

β =


β0
β1
· · ·
βm

 , xi =


1
x1,i
· · ·
xm,i


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Estimation and feature selection

We need to find the best value of β that describes this cloud of point, but also using a minimum
of variables (parsimony principle)

LS-estimation is not very good for that, as the number of variables becomes high... the LASSO
version should be used instead

The LASSO estimate β̂ of the linear regression model parameters is given by

β̂ = argminβ
1√
nλ

∑
i εi

2 +
∑

j |βj |

with λ a so-called regularization parameter, and

β̂ =


β̂0
β̂1
· · ·
βm

 , X =


1 x1,t−n . . . xj,t−n
1 x1,t−n+1 . . . xj,t−n+1

...
... . . .

...
1 x1,t . . . xj,t

 , y =


yt−n
yt−n+1

...
yt


As before, some functions in R/Matlab can do it for you!
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Example based on a set of features

Our proposal model has the following form, for a given lead time k,

yi = βk,0 + βk,1ûi|i−k + βk,2û
2
i|i−k + βk,3û

3
i|i−k

+βk,4 cos

(
2πθ̂t+k|t

360

)
+ βk,5 sin

(
2πθ̂t+k|t

360

)
+βk,6T̂i|i−k + βk,7yi|i−k + εi

where

we have 8 model parameters to estimate, for each lead time k

the weight given to each of these features therefore varies with the lead time k

εi is a noise term, which you may see as our forecast error we want to minimize
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Estimation of the model coefficients

For the example of the 28 April 2002 (as for the other examples),

the necessary vectors and matrices are formed, with n = 600 last values

LASSO estimates of the estimates β̂k,js are computed for every lead time k (k = 1, . . . , 48)

Right:
Evolution of the estimated
model parameters as a
function of the lead time k

Only a few features have
parameters significantly
different from 0: ût+k|t ,
û2t+k|t and yt
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The resulting forecast

For the example of the 28 April 2002 (as before),

the necessary vectors and matrices are formed, with n = 600 last values

Right:
Example of a forecast
for Klim with our more
advanced model, issued
on 28 April 2002,
00:00UTC
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Let us similarly apply that strategy for a whole sample year (2002), and analyse its performance
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Evaluation of more advanced forecasts

Various criteria: bias, MAE, RMSE (and RMSE comparison with our previous best forecasts)
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It seems we have substantially improved... Could still do better!!
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