


What is (linear) regression?

In the simplest case, data is available for:

yi (i = t − n, . . . , t), the response variable, i.e., the variable we will want to predict, eventually

xi (i = t − n, . . . , t), an explanatory variable, i.e., a variable that can help us predict y

At this stage, imagine that xi and yi are your most recent wind speed and corresponding power
observations up to current time t

Example set with the last n = 120
observations of

wind speed xi , and

corresponding power generation
yi
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What is (linear) regression? (continued)

The aim is to uncovering some relationship between these explanatory and response variables

We first do that visually...

Same example, with the last
n = 120 observations of

wind speed xi , and

corresponding power generation yi

In this scatterplot, there seems to be
a (linear) relationship between wind
speed and power
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What is (linear) regression? (continued)

Such a linear relationship between x and y can be written as

yi = β0 + β1xi + εi , i = t − n, . . . , t

where

β0 and β1 are the model parameters (called intercept and slope)

εi is a noise term, which you may see as our forecast error we want to minimize

The linear regression model can be reformulated in a more compact form as

yi = β>xi + εi , i = t − n, . . . , t

with

β =

[
β0
β1

]
, xi =

[
1
xi

]

It is often easier to deal with such compact formulations...
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Least Squares (LS) estimation

Now we need to find the best value of β that describes this cloud of point

Under a number of assumptions, which we overlook here, the (best) model parameters β̂ can be
readily obtained with Least-Squares (LS) estimation

The Least-Squares (LS) estimate β̂ of the linear regression model parameters is given by

β̂ = argminβ
∑

i εi
2 = argminβ

∑
i

(
yi − β>xi

)2
= (X>X)−1X>y

with

β̂ =

[
β̂0
β̂1

]
, X =


1 xt−n
1 xt−n+1

...
...

1 xt

 , y =


yt−n
yt−n+1

...
yt


Even better: some functions in R/Matlab can do it for you!
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The resulting (linear) regression

For the same example set with the
last n = 120 observations of

wind speed xi , and

corresponding power generation yi

The LS-estimate of the model
parameters is:

β̂ =

[
−3.9
9.2

]
, ●
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y = − 3.9 + 9.2x

This type of model and estimation can then be incorporated within in a forecasting approach
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Forecasting in a (linear) regression framework

At a given time t, you (as a forecaster) identified a good model:

yi = β0 +
∑m

j=1 βjxj,i + εi , i = t − n, . . . , t

(or, equivalently: yi = β>xi + εi )

where
yi is still your response variable (say, wind power generation) observed at time i

xj,i is the observation at time i for the jth explanatory variable (j = 1, . . . ,m)

βj is the model parameter for the jth explanatory variable

εi is a noise term, which you may see as our forecast error we want to minimize

Based on the last n observations, you obtain an LS-estimate β̂t , valid at time t

And you can issue forecast using these estimates β̂t , for any new values of the explanatory
variables, i.e.

ŷt+k|t = β>t xt+k

Potential problem here: we do not know future values of the x variable (e.g., wind speed)!
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Example application: combining persistence and climatology

Persistence and climatology were shown to be good benchmarks (difficult to outperform), though

persistence is good for short lead times

climatology is good for longer lead times

Why no combining them, as function of the lead time k?

Reminder of the quality of
the persistence and
climatology forecasts,

in terms of RMSE

as a function of the lead
time k
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Proposal of a combination model and estimation

Our proposal model has the following form, for a given lead time k,

yi = βk,persŷ
(p)
i|i−k + βk,climŷ

(c)
i|i−k + εi , i = t − n, . . . , t

where

ŷ
(p)
i|i−k and ŷ

(c)
i|i−k are the persistence and climatology forecasts, issued at time i − k for time i

βk,pers and βk,clim are intercept and the weights to be given to persistence and climatology forecasts,
respectively

εi is a noise term, which you may see as our forecast error we want to minimize

It therefore combines persistence and climatology forecasts

The weight given to each of these forecasts can change with the lead time k

9/14



Estimation of the model coefficients

For the example of the 28 April 2002 (as in first slides),

the necessary vectors and matrices are formed, with n = 200 last values

LS estimates β̂k,pers and β̂k,clim are computed for every lead time k (k = 1, . . . , 48)

Right:
Evolution of the estimated
model parameters β̂k,pers
and β̂k,clim as a function of
the lead time k

persistence is given less
weight for further lead times

climatology is given more
weight instead
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The resulting forecast

For the example of the 28 April 2002 (as in first slides),

LS estimates β̂k,pers and β̂k,clim are used to combine the available persistence and climatology forecasts

The combination is different for every lead time k (k = 1, . . . , 48)

Right:
Example of a combined
forecast for Klim
(persistence and
climatology), issued on 28
April 2002, 00:00UTC
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Let us similarly apply that strategy for a whole sample year (2002), and analyse its performance
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Evaluation of the combined forecasts

RMSE only, for persistence, climatology, and the combined forecasts
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With this combination strategy, we are getting the best out of the original simple benchmarks!
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A few (more) conclusions at this stage

We have now learned to handle more variables and data

The forecasting approaches do not look impressive still

What could we do?

extracting more information within available data

go further than using simple linear relationships only (to be discussed in the next Module)
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