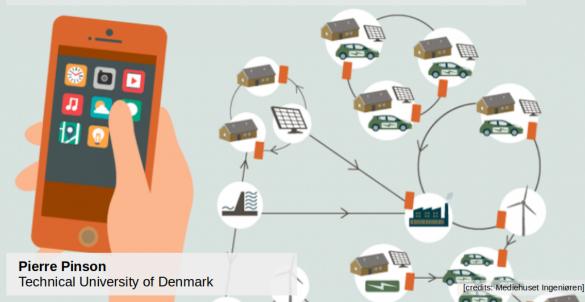
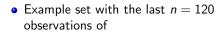
Module 9 – Renewable Energy Forecasting: First Steps

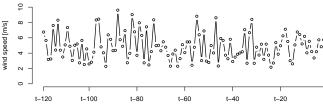
9.2 Going further in a regression framework



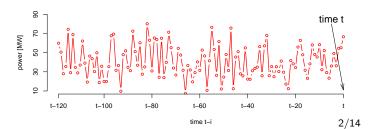
What is (linear) regression?

- In the simplest case, data is available for:
 - y_i (i = t n, ..., t), the **response** variable, i.e., the variable we will want to predict, eventually
 - x_i (i = t n, ..., t), an **explanatory** variable, i.e., a variable that can help us predict y
- At this stage, imagine that x_i and y_i are your most recent wind speed and corresponding power observations up to current time t





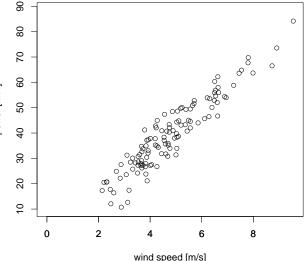
- wind speed x_i, and
- corresponding power generation y_i



time t-i

What is (linear) regression? (continued)

- The aim is to uncovering some relationship between these explanatory and response variables
- We first do that visually...
- 80 2 • Same example, with the last n = 120 observations of 8 power [MW] 50 • wind speed x_i , and corresponding power generation y_i 40 8 • In this *scatterplot*, there seems to be a (linear) relationship between wind 20 speed and power 0 00 9



What is (linear) regression? (continued)

• Such a linear relationship between x and y can be written as

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i, \quad i = t - n, \dots, t$$

where

- β_0 and β_1 are the model parameters (called *intercept* and *slope*)
- ε_i is a noise term, which you may see as our forecast error we want to minimize

The linear regression model can be reformulated in a more compact form as

$$y_i = \boldsymbol{\beta}^\top \mathbf{x}_i + \varepsilon_i, \quad i = t - n, \dots, t$$
with

$$\boldsymbol{\beta} = \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix}, \qquad \mathbf{x}_i = \begin{bmatrix} 1 \\ x_i \end{bmatrix}$$

• It is often easier to deal with such compact formulations...

Least Squares (LS) estimation

- $\bullet\,$ Now we need to find the best value of β that describes this cloud of point
- Under a number of assumptions, which we overlook here, the (best) model parameters $\hat{\beta}$ can be readily obtained with Least-Squares (LS) estimation

The Least-Squares (LS) estimate \hat{eta} of the linear regression model parameters is given by

$$\hat{\boldsymbol{\beta}} = \arg\min_{\boldsymbol{\beta}} \sum_{i} \varepsilon_{i}^{2} = \arg\min_{\boldsymbol{\beta}} \sum_{i} \left(y_{i} - \boldsymbol{\beta}^{\top} \mathbf{x}_{i} \right)^{2} = (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top} \mathbf{y}$$

with

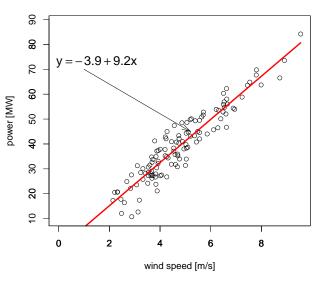
$$\hat{\boldsymbol{\beta}} = \begin{bmatrix} \hat{\beta}_0 \\ \hat{\beta}_1 \end{bmatrix}, \qquad \mathbf{X} = \begin{bmatrix} 1 & x_{t-n} \\ 1 & x_{t-n+1} \\ \vdots & \vdots \\ 1 & x_t \end{bmatrix}, \qquad \mathbf{y} = \begin{bmatrix} y_{t-n} \\ y_{t-n+1} \\ \vdots \\ y_t \end{bmatrix}$$

• Even better: some functions in R/Matlab can do it for you!

The resulting (linear) regression

- For the same example set with the last *n* = 120 observations of
 - wind speed x_i, and
 - corresponding power generation y_i
- The LS-estimate of the model parameters is:

$$\hat{oldsymbol{eta}} = \left[egin{array}{c} -3.9 \\ 9.2 \end{array}
ight],$$



• This type of model and estimation can then be incorporated within in a forecasting approach

Forecasting in a (linear) regression framework

• At a given time *t*, you (as a forecaster) identified a good model:

$$y_i = \beta_0 + \sum_{j=1}^m \beta_j x_{j,i} + \varepsilon_i, \quad i = t - n, \dots, t$$

(or, equivalently: $y_i = \boldsymbol{\beta}^\top \mathbf{x}_i + \varepsilon_i$)

where

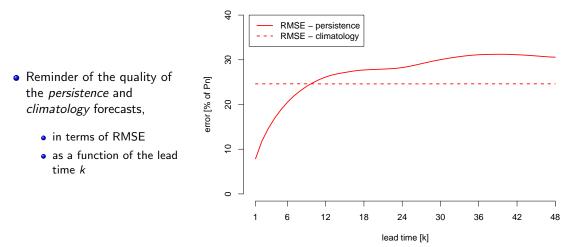
- y_i is still your response variable (say, wind power generation) observed at time i
- $x_{j,i}$ is the observation at time *i* for the j^{th} explanatory variable $(j = 1, \ldots, m)$
- β_j is the model parameter for the $j^{\rm th}$ explanatory variable
- ε_i is a noise term, which you may see as our forecast error we want to minimize
- Based on the last *n* observations, you obtain an **LS**-estimate $\hat{\beta}_t$, valid at time *t*
- And you can issue forecast using these estimates $\hat{\beta}_t$, for any new values of the explanatory variables, i.e.

$$\hat{y}_{t+k|t} = \boldsymbol{\beta}_t^\top \mathbf{x}_{t+k}$$

• Potential problem here: we do not know future values of the x variable (e.g., wind speed)!

Example application: combining persistence and climatology

- Persistence and climatology were shown to be good benchmarks (difficult to outperform), though
 - persistence is good for short lead times
 - climatology is good for longer lead times
- Why no combining them, as function of the lead time k?



• Our proposal model has the following form, for a given lead time k,

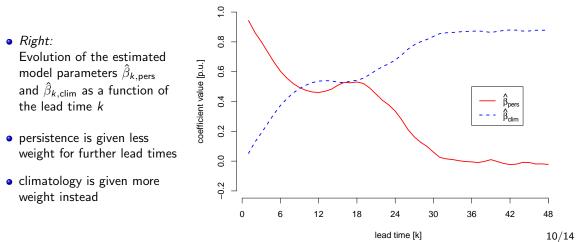
$$y_i = \beta_{k, pers} \hat{y}_{i|i-k}^{(p)} + \beta_{k, clim} \hat{y}_{i|i-k}^{(c)} + \varepsilon_i, \quad i = t - n, \dots, t$$

where

- $\hat{y}_{i|i-k}^{(p)}$ and $\hat{y}_{i|i-k}^{(c)}$ are the persistence and climatology forecasts, issued at time i k for time i
- $\beta_{k,pers}$ and $\beta_{k,clim}$ are *intercept* and the weights to be given to persistence and climatology forecasts, respectively
- ε_i is a noise term, which you may see as our forecast error we want to minimize
- It therefore combines persistence and climatology forecasts
- The weight given to each of these forecasts can change with the lead time k

Estimation of the model coefficients

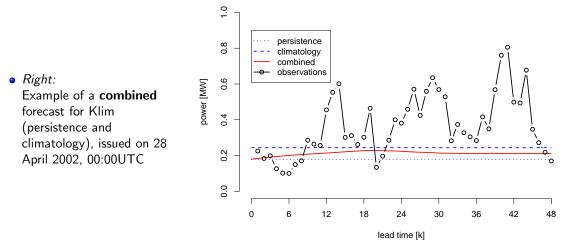
- For the example of the 28 April 2002 (as in first slides),
 - the necessary vectors and matrices are formed, with n = 200 last values
 - LS estimates $\hat{\beta}_{k,\text{pers}}$ and $\hat{\beta}_{k,\text{clim}}$ are computed for every lead time k ($k = 1, \dots, 48$)



DTU

The resulting forecast

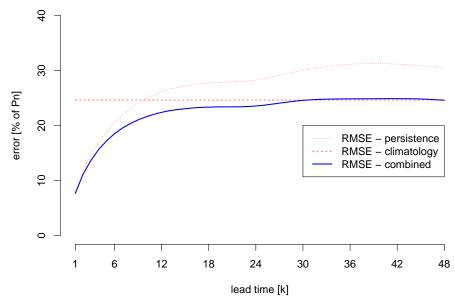
- For the example of the 28 April 2002 (as in first slides),
 - LS estimates $\hat{\beta}_{k,\text{pers}}$ and $\hat{\beta}_{k,\text{clim}}$ are used to combine the available *persistence* and *climatology* forecasts
 - The combination is different for every lead time k (k = 1, ..., 48)



• Let us similarly apply that strategy for a whole sample year (2002), and analyse its performance

Evaluation of the combined forecasts

• RMSE only, for persistence, climatology, and the combined forecasts



• With this combination strategy, we are getting the best out of the original simple benchmarks!

DTU

- We have now learned to handle more variables and data
- The forecasting approaches do not look impressive still
- What could we do?
 - extracting more information within available data
 - go further than using simple linear relationships only (to be discussed in the next Module)

Use the self-assessment quizz to check your understanding!

