Module 8 – Verification of Renewable Energy Forecasts

8.1 What makes a good forecast?

• Following Murphy (ref. and link below), the *nature of "goodness"* in weather forecasting (same goes for other types of forecasts) consists in:

- Following Murphy (ref. and link below), the *nature of "goodness"* in weather forecasting (same goes for other types of forecasts) consists in:
 - Forecast consistency:

"Forecasts should correspond to the forecaster's best judgement on future events, based on the knoweldge available at the time of issuing the forecasts"

- Following Murphy (ref. and link below), the *nature of "goodness"* in weather forecasting (same goes for other types of forecasts) consists in:
 - Forecast consistency:

"Forecasts should correspond to the forecaster's best judgement on future events, based on the knoweldge available at the time of issuing the forecasts"

Forecast quality:

"Forecasts should describe future events as good as possible, regardless of what these forecasts may be used for"

- Following Murphy (ref. and link below), the *nature of "goodness"* in weather forecasting (same goes for other types of forecasts) consists in:
 - Forecast consistency:

"Forecasts should correspond to the forecaster's best judgement on future events, based on the knoweldge available at the time of issuing the forecasts"

Forecast quality:

"Forecasts should describe future events as good as possible, regardless of what these forecasts may be used for"

Forecast value:

"Forecasts should bring additional benefits (monetary or others) when used as input to decision-making"

[Extra reading:

ÅH Murphy (1993). What is a good forecast? An essay on the nature of goodness in weather forecasting. Weather and Forecasting 8: 281–293 (pdf)]

Illustrative example (1)

- You are in charge of optimal maintenance planning at Horns Rev, and have booked both a vessel and an helicopter for onsite service (for a cost of 100.000€)
- The conditions for this to happen at time t+k are

• wind speed: $u_{t+k} \le 15 \text{ m.s}^{-1}$ • wave height: $h_{t+k} \le 1.8 \text{ m}$

- 24 hours before service (time t), this is your last chance to cancel before huge financial penalties (another 100.000€)
- Your two forecasters (Foresight and Blindspot) tell you that:

	Foresight	Blindspot
$\widehat{u}_{t+k t}$	12.6 m.s ⁻¹	3.4 m.s ⁻¹
$\hat{h}_{t+k t}$	1.6 m	0.2 m

In both cases, you go ahead with the planned service...

• At time t + k, this is what actually happened:

	Foresight	Blindspot
$\hat{u}_{t+k t}$	12.6 m.s ⁻¹	3.4 m.s ⁻¹
$\hat{h}_{t+k t} \hat{h}_{t+k t}$	1.6 m	0.2 m
$u_{t+k} \\ h_{t+k}$	12.3 m.s ⁻¹ 1.45 m	

- In both cases, your overall cost is 100.000€,
- Both Foresight and Blindspot served their purpose, since you made the right decision... Forecast value is good
- You might want to have a chat with Blindspot, since its forecast quality appears to be far from good!

Illustrative example (2)

The boy who cried wolf (Tale from Ancient Greece) - revisited.

- $\bullet \ {\rm ROGUE} \ {\rm TRADING}^{\circledR}$ made huge losses last year, due to expensive upregulation events...
- It is therefore decided to get a new forecaster that would be good at predicting them
- Foresight and Blindspot are in competition for the job

• The score is simple:

$$Sc = 100 \cdot \frac{\#\{\text{events leading to upregulation predicted}\}}{\#\{\text{events leading to upregulation}\}}$$

• the higher the better! (0 is worst, 100 is best)

If you were Foresight and Blindspot, what would you do?

If you were Foresight and Blindspot, what would you do?

• The two competitors have sharpened their strategy:

	Foresight	Blindspot
Strategy	Always predict need for upregulation!	Do your best to find when upregulation will occur

- The results on the benchmarking exercise are such that:
 - #{market time units} = 8760
 - #{events leading to upregulation} = 3237
 - #{events leading to upregulation predicted by Foresight} = 3237
 - $\bullet \ \#\{\text{events leading to upregulation predicted by Blindspot}\} = 2500$
- Their scores:

	Foresight	Blindspot
Sc	100%	77.2%

If you were Foresight and Blindspot, what would you do?

• The two competitors have sharpened their strategy:

	Foresight	Blindspot
Strategy	Always predict need for upregulation!	Do your best to find when upregulation will occur

- The results on the benchmarking exercise are such that:
 - #{market time units} = 8760
 - #{events leading to upregulation} = 3237
 - #{events leading to upregulation predicted by Foresight} = 3237
 - #{events leading to upregulation predicted by Blindspot} = 2500
- Their scores:

	Foresight	Blindspot
Sc	100%	77.2%

Foresight gets the job!

- The consequences are:
 - \bullet even though never missing on upregulation events, $\mathrm{Rogue}\ \mathrm{Trading}^{\circledR}$ will always miss the down regulation ones
 - eventually, the financial loss may still be there... and possibly much higher than expected

- The consequences are:
 - \bullet even though never missing on upregulation events, $\mathrm{ROGUE}\ \mathrm{TRADING}^{\circledR}$ will always miss the down regulation ones
 - eventually, the financial loss may still be there... and possibly much higher than expected
- A more **consistent** way to evaluate these forecasters would be to consider:

	event <i>happens</i>	<i>no</i> event
event <i>predicted</i>	HIT	FALSE ALARM
event not predicted	MISS	CORRECT REJECTION

• And a proper score, ensuring forecast consistency, is:

$$Sc = 100 \cdot \frac{\#\{\text{hits}\}}{\#\{\text{hits}\} + \#\{\text{misses}\} + \#\{\text{false alarms}\}}$$

• The higher the better! (0 is worst, 100 is best) (This score is called the *Threat Score* (TS))

DTU

• In the present case:

	Foresight	Blindspot
#{hits}	3237	2320
$\#\{misses\}$	0	917
$\#\{false alarms\}$	5523	180
#{correct rejections}	0	5343

• The resulting *Threat Score* (TS) values are:

	Foresight	Blindspot
TS	36.9%	67.9%

- Conclusions: if using a proper score...
 - Blindspot should have gotten the job!
 - \bullet I can promise that $\mathrm{ROGUE}\ \mathrm{TRADING}^{\circledR}$ would have lower financial losses

Test case: the Klim wind farm

• The wind farm:

• full name: Klim Fjordholme

• onshore/offshore: onshore

• year of commissioning: 1996

nominal capacity (P_n): 21 MW
number of turbines in farm: 35

• average annual electricity generation: 49 GWh

• data available: 1999-2003 (for some researchers)

• temporal resolution: 5 mins, and hourly averages

• forecasts: deterministic and probabilistic

 A link to the online description: Vattenfall's Klim wind farm

• The wind farm has been recommissioned recently: NordJyske online article

Splitting of available data

DTU

- Forecasting is about
 - being able to predict future events, in new situations
 - not only explain what happen in the past...
- One need to verify forecasts on data that has not been used for the modelling!

• In this Module we focus on the last 6 months of 2002, with other examples for some other periods

Use the self-assessment quizz to check your understanding!

