Module 7 – Introduction to Renewable Energy Analytics

7.1 Forecasts, why and in what form?

Why forecasting?

DTU

@ MARK ANDERSON

WWW.ANDERTOONS.COW

"But to be fair, there's a fifty percent chance of just about anything."

- Forecasting is a *natural first step* to decision-making
- Believing we know what will happen
 - helps making decisions
 - but mainly, makes us more confident about it!
- Key application areas include:
 - weather and climate
 - economics and finance
 - logistics
 - insurance, etc.

What to forecast?

- Different actors may have different needs...
 - market participant, supply side (e.g., conventional generator, wind farm operator)
 - market participant, demand side (e.g., retailer)
 - participants in neighboring markets
 - market operator
 - system operator
 - but also, you and I

What to forecast?

- Different actors may have different needs...
 - market participant, supply side (e.g., conventional generator, wind farm operator)
 - market participant, demand side (e.g., retailer)
 - participants in neighboring markets
 - market operator
 - system operator
 - but also, you and I
- One may want forecasts of:
 - the electric load
 - day-ahead prices
 - potential imbalance sign
 - regulation prices/penalties
 - potential congestion on interconnectors
 - etc.
 - Generation from renewable energy sources!!!
- Nearly all these quantities are driven by weather and climate!

- Forecast information is widely used as input to several decision-making problems:
 - definition of reserve requirements (i.e., backup capacity for the system operator)
 - unit commitment and economic dispatch (i.e., least costs usage of all available units)
 - coordination of renewables with **storage**
 - design of optimal trading strategies
 - electricity market-clearing
 - optimal maintenance planning (especially for offshore wind farms)
- Inputs to these methods are:
 - deterministic forecasts
 - probabilistic forecasts as quantiles, intervals, and predictive distributions
 - probabilistic forecasts in the form of trajectories (/scenarios)
 - risk indices (broad audience applications)
- For nearly all of these problems, optimal decisions can only be obtained if fully considering forecast uncertainty...

The problem with forecast uncertainty estimation

- DTU
- The French National meteorological office (Meteo-France) has been communicating *"confidence indices"* (indices de confiance) along with their forecasts for quite a while...
- Example set of forecasts: (from "1 = low confidence" to "5 = high confidence")

• Do you get something out of it?

Now... the "big mouth" paradox

- It might always be difficult to trust someone providing you with forecasts
- Even more so if these are probabilistic...
- Let us consider a simple american setup (focus on New Orleans), with two rival forecasters:
- The two competing forecasters tell you that:

• Forecaster A:

It will rain next Monday, and the precipitation amount will be of 22mm

• Forecaster B:

There is a probability of 38% that precipitation is more than 25mm next week

• Who would you hire?

[Extra reading: S Joslyn, L Nadav-Greenberg, RM Nichols (2009) Probability of precipitation: Assessment and enhancement of end-user understanding. *Bulletin of the American Meteoreological Society* **90**: 185–193 (pdf) UR Karmarkar, ZL Tormala (2010). Believe me - I have no idea what I'm talking about: The effects of source certainty on consumer involvement and persuasion. *Journal of Consumer Research* **36**(6): 1033–1049 (pdf)] 6/9

Example use of forecasts: market participation

- Dutch electricity market over the year 2002:
 - day-ahead market APX
 - regulation mechanism managed by TenneT, the TSO for the Netherlands
- Participation of a **15 MW wind farm**, without any storage device and without any control on the power production
- **Point** and **probabilistic** predictions (full predictive distributions) generated with state-of-the-art statistical methods
- Revenue-maximization strategies
 - based on point predictions only (persistence or advanced method)
 - derived from probabilistic predictions and a model of the participant's sensitivity to regulation costs

	Pers.	Adv. point pred.	Prob. pred.	Perfect pred.
Contracted energy (GWh)	44.37	45.49	62.37	46.41
Surplus (GWh)	18.12	9.87	4.89	0
Shortage (GWh)	16.08	8.95	20.85	0
Down-regulation costs $(10^3 \in)$	195.72	119.99	42.61	0
Up-regulation costs $(10^3 \in)$	79.59	52.01	61.46	0
Total revenue $(10^3 \in)$	1041.38	1145.69	1212.61	1317.69
Av. down-reg. unit cost (€/MWh)	10.80	12.15	8.71	0
Av. up-reg. unit cost (€/MWh)	4.95	5.81	2.95	0
Av. reg. unit cost (€/MWh)	8.05	9.13	4.04	0
Av. energy price (€/MWh)	22.44	24.68	26.13	28.37
Part of imbalance (% prod. energy)	73.69	40.55	55.46	0
Performance ratio (%)	79.1	86.99	92.1	100

[Source: P Pinson, C Chevallier, G Kariniotakis. Trading wind generation from short-term probabilistic forecasts of wind power. *IEEE Trans.* on Power Systems 22(3): 1148-1156 (pdf)]

Use the self-assessment quizz to check your understanding!

