
Module 6 – Participation of Renewables in Electricity Markets

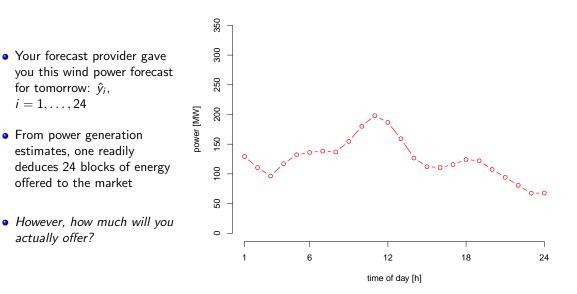
6.3 Offering renewable energy under uncertainty

Remember the problem setup

• Students of the course 31761 ("Renewables in Electricity Markets") got convinced to join forces and start an energy trading company: Rogue Trading (RT[®])

Remember the problem setup

• Students of the course 31761 ("Renewables in Electricity Markets") got convinced to join forces and start an energy trading company: Rogue Trading (RT[®])


- And, the course responsible suggested you first invest in that *new-generation wind farm...*
 - Nominal capacity: 350 MW
 - Energy production sold through the Nord Pool (Western Denmark area)
 - Balance responsibility

• From early 2016, you are to trade your energy generation through the Nord Pool

Remember the problem setup (2)

27 March 2016 - 11am

It is a newsvendor problem!

Let us focus on a market time unit i (say, the hour between 13:00 and 14:00)

- Sets of prices:
 - day-ahead price: λ_i^S
 - downregulation price: λ_i^{\downarrow}
 - upregulation price: λ_i^{\uparrow}
- Why is it a newsvendor problem?
 - one decision to be made before gate closure (i.e., offer for various market time units)
 - actual renewable energy generation is uncertain
 - WE ASSUME THAT the marginal profit and loss are known...

 $\pi_i^+ = \lambda_i^S - \lambda_i^\downarrow$ (for any generated MWh above day-ahead schedule) $\pi_i^- = \lambda_i^\uparrow - \lambda_i^S$ (for any lacking MWh w.r.t. day-ahead schedule)

• the aim definitely is to maximize expected profit!!

Obtaining the optimal offer

- As for the "Roskilde ticket pusher" example, the optimal generation offer of the renewable energy producer for the market time unit *i* is

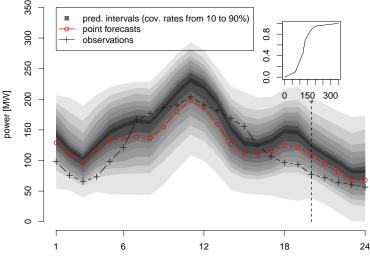
$$\mathsf{E}_i^* = \mathsf{F}_i^{-1}(\alpha^*)$$

with

$$\alpha^* = \frac{\pi^+}{\pi^+ + \pi^-}$$

- The problem is... that we do not know F, π^+ and π^-
- We definitely need some forecasts (!), so that

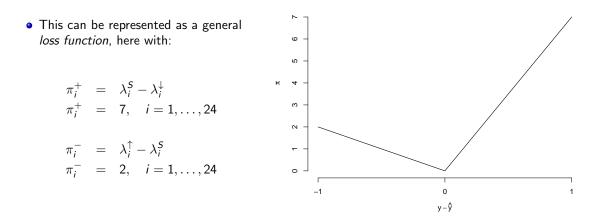
$$E_i^* = \hat{F}_i^{-1}(\hat{\alpha}^*)$$


with

- \hat{F}_i : a predicted distribution for renewable energy generation at time unit i
- \hat{lpha}_i^* : a "predicted" optimal quantile based on forecasts for the marginal profit and loss $\hat{\pi}^+$ and $\hat{\pi}^-$

We can get probabilistic renewable energy forecasts!

• To be discussed more specifically in the next Modules...



lead time [h]

• In short, one can get a description \hat{F} of the cumulative distribution function of renewable energy generation for every market time unit 6/10

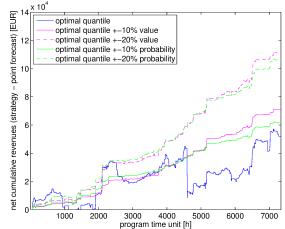
And expert assessments/forecasts on market penalties

- The same forecast provider or your own market expert could give you a best guess on evolution of penalties for up- (π^-) and down-regulation (π^+)

• The optimal quantile to trade is that for which: $\alpha_i = \frac{7}{7+2} = 0.78, i = 1, \dots, 24$

Results for the newsvendor strategy

- The optimal quantile to trade can be extracted for each market time unit, individually
- Similar to other strategies, it tends to offer more energy than what you expect to produce


• The results from this trading strategy are:

$$R_{DA} = 122.771, 40 ∈ R_B = -36.030, 97 ∈ R_{DA} + R_B = 86.627, 50 ∈$$

 $\gamma_{newsvendor} = 100\%$

Be ready for a bumpy ride...!

- The outcome of a "newvendor-type" offering strategy can highly fluctuate from one market time unit to the next, and from one day to the next
- Since being the optimal strategy *in expectation*, it is only best in the long run, under **A LOT of assumptions...**

- In practice, it was observed that this could lead to a bumpy ride
- Simple ways to control the "agressivity" of trading strategies (or account for risk-aversion) can be beneficial

[Source: M. Zugno et al. (2013) Trading wind energy on the basis of probabilistic forecasts both of wind generation and of market quantities. *Wind Energy* 16(6): 909-926] 9/10

Use the self-assessment quizz to check your understanding!

