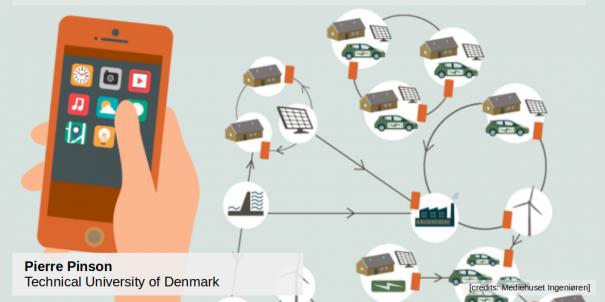
Module 6 – Participation of Renewables in Electricity Markets

6.2 Decision-making under uncertainty



The newsvendor problem

DTU

- The newsvendor problem is one of the most classical problems in stochastic optimization (or statistical decision theory)
- It can be traced back to:

FY Edgeworth (1888). The mathematical theory of banking. *Journal of the Royal Statistical Society* **51**(1): 113–127

even though in this paper the problem is about how much a bank should keep in its reserves to satisfy request for withdrawal (i.e., the bank-cash-flow problem)

- It applies to varied problems as long as:
 - one shot possibility to decide on the quantity of interest
 - outcome is uncertain
 - known marginal profit and loss
 - the aim is to maximize expected profit!

Revisited: The "Roskilde ticket pusher" problem[©]

- Everybody seem to want to go and see Eminem, right? (could also be Bruno Mars or Gorillaz, for those who don't like Eminem)
- Maybe some could have the idea of making a profit using this as an occasion...

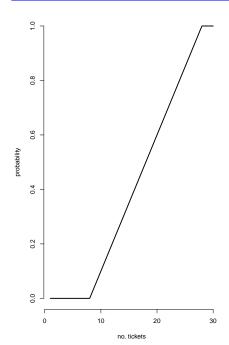
[Note that this type of activity is not legal, as such purchased tickets cannot be re-sold at a price higher than the official retail price] - Do not get any idea here!

- 1-day tickets for the day Eminem is playing
- They are to be sold out fast, while you know that quite a lot of DTU students will not be able to buy the tickets on time...
- On 5 March 2018, you have an opportunity to make a good deal:
 - buy a batch tickets (up to 30) at an advantageous price!
 - sell them out to your fellow DTU students

"Roskilde ticket pusher" problem[©]: detailed setup

- Sets of prices:
 - 1-day tickets for Eminem: 1050 dkk
 - retail price to DTU students: 1100 dkk
 - unsold tickets can be given to your RUC pusher friend at 930 dkk
- Why is it a newsvendor problem?
 - this is a one-shot opportunity batch buy on 5 March 2018 (here and now!)
 - actual DTU demand is uncertain
 - the marginal profit and loss are known a profit of 50 dkk per ticket sold, and a loss of 120 dkk per ticket unsold
 - the aim definitely is to maximize expected profit!!
- If you were that "Roskilde ticket pusher", how many tickets would you buy?

You need to know your probabilities



- Based on an expert assessment, here is the cumulative distribution function F for the number of tickets (X) we may be able to sell to our DTU fellow students
- It shows $P[X \le n]$ as a function of n
- Examples:
 - $P[X \le 8] = 0$: we are 100% sure to sell at least 8 tickets
 - $P[X \le 10] = 0.1$: we are 90% sure to sell more than 10 tickets
 - $P[X \le 20] = 0.6$: we are 40% sure to sell more than 20 tickets
 - $P[X \le 28] = 1$: there is no way we sell more than 28 tickets

In terms of marginal profit and loss

n	P[X = n]	P _{sell}	P _{no-sell}	$\mathbb{E}[profit]$	$\mathbb{E}[loss]$	$\mathbb{E}[net]$
≤8	0					
9	0.05	1	0	50	0	50
10	0.05	0.95	0.05	47.5	6	41.5
11	0.05	0.9	0.1	45	12	33

where

- P[X = n]: probability that demand is **EXACTLY** n tickets
- P_{sell} : probability of selling the n^{th} ticket
- $P_{\text{no-sell}}$: probability of **NOT** selling the n^{th} ticket
- ullet $\mathbb{E}[\mathsf{profit}]$: expected profit from selling the n^{th} ticket
- ullet $\mathbb{E}[\mathsf{loss}]$: expected loss from **NOT** selling the n^{th} ticket
- ullet $\mathbb{E}[\mathsf{net}]$: expected net profit related to the n^{th} ticket

With the full table

n	P[X = n]	P _{sell}	P _{no-sell}	$\mathbb{E}[profit]$	$\mathbb{E}[loss]$	$\mathbb{E}[net]$
≤8	0					
9	0.05	1	0	50	0	50
10	0.05	0.95	0.05	47.5	6	41.5
11	0.05	0.9	0.1	45	12	33
12	0.05	0.85	0.15	42.5	18	24.5
13	0.05	0.8	0.2	40	24	16
14	0.05	0.75	0.25	37.5	30	7.5
15	0.05	0.7	0.3	35	36	-1
16	0.05	0.75	0.35	32.5	42	-9.5
28	0.05	0	1	0	120	-120
>28	0					

• So, how many tickets should our "Roskilde ticket pusher" buy?

Mathematical formulation

- If we have
 - λ^P : purchase cost for a ticket (1050 dkk)
 - λ^R : re-sell price of a ticket (1100 dkk)
 - λ^T : transfer price for unsold tickets (930 dkk)
- It then defines
 - π^+ : unit cost of buying less than needed

$$\pi^+ = \lambda^R - \lambda^P$$
 (50 dkk)

• π^- : unit cost of buying more than needed

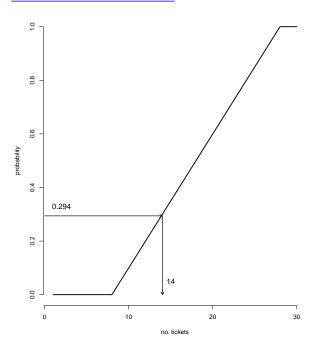
$$\pi^- = \lambda^P - \lambda^T \text{ (120 dkk)}$$

• Then the optimal number n^* of tickets to purchase is such that:

$$P[X \le n^*] = \frac{\pi^+}{\pi^+ + \pi^-}$$
 (here, 0.294)

This defines the nominal level α^* of our original *cumulative distribution function F*

The optimal quantile



- The optimal decision of the "Roskilde ticket pusher" is to pick the quantile with nominal level α^* of his predictive cumulative distribution function F
- Graphically:

$$n^* = F^{-1}(\alpha^*) = 14$$

Use the self-assessment quizz to check your understanding!

