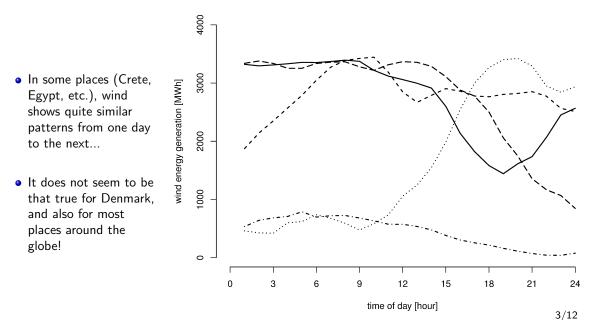

Module 5 – Impact of Renewables on Electricity Markets

5.3 How do renewables impact electricity markets?

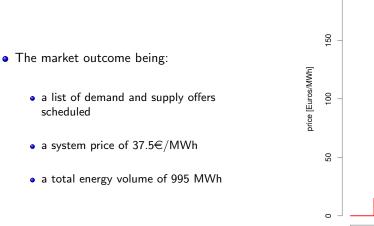


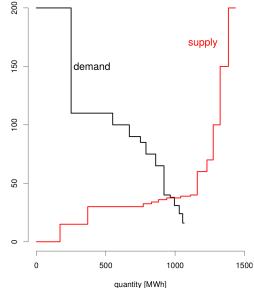
• On the day-ahead market, wind acts as a **stochastic driver** since having the lowest short-run marginal cost, with quantities based on forecasts (13-37 hours ahead)

Variability of wind power generation

DTU

5 days randomly chosen over December 2011 - Danish wind power generation

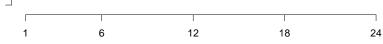



- We use the same setup as for previous Modules on e.g. day-ahead markets!
- Two participants on the supply side have wind farms:

Company	Supply/Demand	id	Nominal Power (MW)
RT®	Supply	G_1	350
WeTrustInWind	Supply	G ₂	250
the others	Supply	<i>G</i>	

- Now, let us simulate outcomes of the day-ahead market,
 - assuming that all the others are always offering the same (both supply and demand)
 - solving the market-clearing using the simple LP formulation given in the lecture on day-ahead markets (no network consideration...)

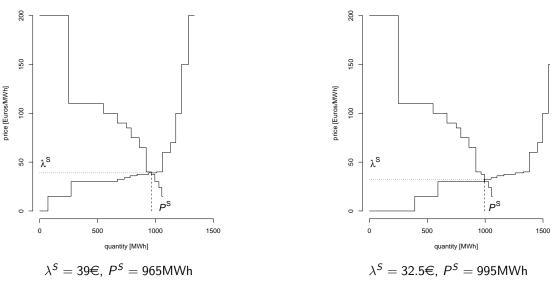
Reminder of the supply and demand curves



We are going to perturb this equilibrium by pushing the supply curve around...

A first daily profile for G_1 and G_2 offers

power [MW]


time of day [h]

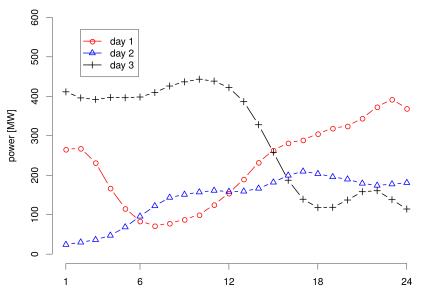
Market-clearing outcomes for sample hours

Hour 7 (72 MWh wind):

Hour 23 (392 MWh wind):

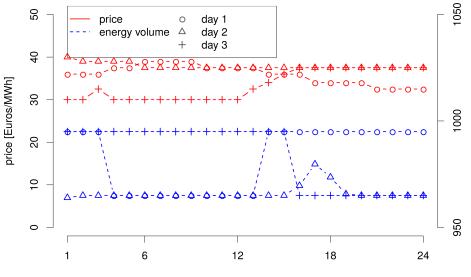
7/12

Looking at the whole day...


1050 50 price 0 energy volume - 🕰 - ' 4 - 0 -0 0-0~ 0-0-0 -0-0 price [Euros/MWh] 0-0-- 0 30 1000 $\Delta - \Delta - \Delta$ $\wedge - \wedge - \wedge$ 20 10 $-\Delta - \Delta - \Delta - \Delta - \Delta - \Delta - \Delta$ 950 0 _ 6 12 18 24

time of day [h]

Now comparing several days


Wind profiles for 3 different days:

time of day [h]

Market outcomes for these days

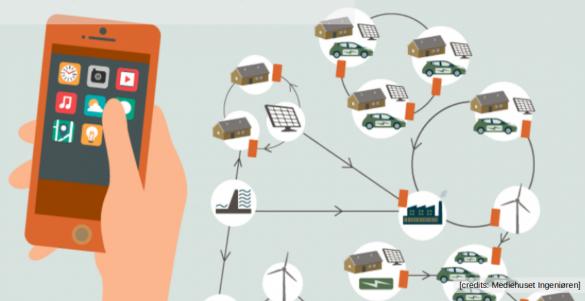
In terms of prices, and energy volumes:

time of day [h]

DTU

Important properties to remember!

- Remember our notations (for a given market time unit):
 - λ^{S} : market-clearing price
 - P^S: energy volume cleared through the market
- For convenience, they are denoted as function of overall amount P^R of renewable energy offered, i.e., $\lambda^S(P^R)$ and $P^S(P^R)$.
- Two key properties when clearing a market with renewable energy offers:


1. The cleared energy volume is at least as much as in the case of no renewable energy:

$$P^{S}(P^{R}) \geq P^{S}(0), \quad P^{R} \geq 0$$

2. The clearing price is at worst the same as in the case of no renewable energy:

$$\lambda^{S}(P^{R}) \leq \lambda^{S}(0), \quad P^{R} \geq 0$$

Use the self-assessment quizz to check your understanding!

