Module 3 – Intra-day and Balancing Markets

3.5 One-price vs. two-price settlement

Pierre Pinson
Technical University of Denmark
The one-price imbalance settlement

Basic properties:

<table>
<thead>
<tr>
<th>$\Delta P > 0$</th>
<th>$\Delta P \sim 0$</th>
<th>$\Delta P < 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\lambda^B > \lambda^S$</td>
<td>$\lambda^B = \lambda^S$</td>
<td>$\lambda^B < \lambda^S$</td>
</tr>
</tbody>
</table>

Consequences on settlement for those dispatched through the day-ahead market:

- $\Delta P > 0$:
 - Generator i producing less than scheduled must buy $\hat{y}_i^G - y_i^G$ at price λ^B
 - Demand j consuming more than scheduled must buy $\hat{y}_j^D - y_j^D$ at price λ^B
 - Generator i producing more than scheduled must sell $y_i^G - \hat{y}_i^G$ at price λ^B
 - Demand j consuming less than scheduled must sell $y_j^D - \hat{y}_j^D$ at price λ^B

- $\Delta P < 0$: ... basically, the same type of reasoning

- Meanwhile, balancing generators simply sell or buy at price λ^B
Example case 1: Outage of G_5

“Even though scheduled, the unit G_5 of KøbenhavnCHP will be down during that hour, and the operator could not get a match in the intra-day market…”

- All others are producing and consuming as planned.
Example case 1: Outage of G_5

“Even though scheduled, the unit G_5 of KøbenhavnCHP will be down during that hour, and the operator could not get a match in the intra-day market…”

- All others are producing and consuming as planned.
- For the **balancing auction**, one has:
 - $\Delta P = 60 \text{ MWh}$ (since demand is higher than generation by 60 MWh for that hour)
 - $\lambda^B = 45 \text{ €/MWh}$
 - Scheduled balancing generators: B_1 and B_2 (only 30 MWh upward)
Example case 1: Outage of G_5

“Even though scheduled, the unit G_5 of KøbenhavnCHP will be down during that hour, and the operator could not get a match in the intra-day market…”

● All others are producing and consuming as planned.

● For the **balancing auction**, one has:

 ● $\Delta P = 60$ MWh (since demand is higher than generation by 60 MWh for that hour)

 ● $\lambda^B = 45$ €/MWh

 ● Scheduled balancing generators: B_1 and B_2 (only 30 MWh upward)

● The **settlement** leads to:

 ● G_5 paying $60 \times 45 = 2700$ €

 ● $B_1(/{G_3})$ and B_2 each receiving $30 \times 45 = 1350$ €
Example case 1: Outage of G_5

“Even though scheduled, the unit G_5 of KøbenhavnCHP will be down during that hour, and the operator could not get a match in the intra-day market...”

- All others are producing and consuming as planned.

- For the balancing auction, one has:
 - $\Delta P = 60$ MWh (since demand is higher than generation by 60 MWh for that hour)
 - $\lambda^B = 45$ €/MWh
 - Scheduled balancing generators: B_1 and B_2 (only 30 MWh upward)

- The settlement leads to:
 - G_5 paying $60 \times 45 = 2700$ €
 - B_1 ($/G_3$) and B_2 each receiving $30 \times 45 = 1350$ €

- Considering both day-ahead and balancing stages:
 - G_5 receives $60 \times 37.5 = 2250$ €, and has to pay $60 \times 45 = 2700$ €... That is a loss of 450 €(!)
 - B_1 ($/G_3$) receives $200 \times 37.5 = 7500$ € (day-ahead) and $30 \times 45 = 1350$ € at the balancing stage
Example case 2: Wind forecast errors

“For both wind farms G_1 and G_2 (operated by RT® and WeTrustInWind), the actual generation is not equal to that foreseen when clearing the day-ahead market, i.e.”

- for G_1: $\hat{y}_1^G = 50$ MWh but actual generation is $y_1^G = 30$ MWh
- for G_2: $\hat{y}_2^G = 120$ MWh but actual generation is $y_2^G = 155$ MWh

- All others are producing and consuming as planned.
Example case 2: Wind forecast errors

“For both wind farms G_1 and G_2 (operated by RT® and WeTrustInWind), the actual generation is not equal to that foreseen when clearing the day-ahead market, i.e.”

- for G_1: $\hat{y}^G_{G} = 50$ MWh but actual generation is $y^G_{G} = 30$ MWh
- for G_2: $\hat{y}^G_{G_2} = 120$ MWh but actual generation is $y^G_{G_2} = 155$ MWh

All others are producing and consuming as planned.

For the balancing auction, one has:

- $\Delta P = -15$ MWh (since generation is higher than demand by 15 MWh for that hour)
- $\lambda^B = 35$ €/MWh
- Scheduled balancing generators: B_1 (only 15 MWh downward)
Example case 2: Wind forecast errors

“For both wind farms G_1 and G_2 (operated by RT® and WeTrustInWind), the actual generation is not equal to that foreseen when clearing the day-ahead market, i.e.”

- for G_1: $\hat{y}_1^G = 50$ MWh but actual generation is $y_1^G = 30$ MWh
- for G_2: $\hat{y}_2^G = 120$ MWh but actual generation is $y_2^G = 155$ MWh

All others are producing and consuming as planned.

For the balancing auction, one has:
- $\Delta P = -15$ MWh (since generation is higher than demand by 15 MWh for that hour)
- $\lambda^B = 35 \, €/MWh$
- Scheduled balancing generators: B_1 (only 15 MWh downward)

The settlement leads to:
- G_1 paying $20 \times 35 = 700 \, €$
- G_2 receiving $35 \times 35 = 1225 \, €$
- B_1 paying $15 \times 35 = 525 \, €$

Considering both day-ahead and balancing stages:
- G_1 receives $50 \times 37.5 = 1875 \, €$, then pays $20 \times 35 = 700 \, €$ - Gives $1175 \, €$
- G_2 receives $120 \times 37.5 = 4500 \, €$, then receives again $35 \times 35 = 1225 \, €$ - Gives $5775 \, €$
- $B_1 (\text{or } G_3)$ receives $200 \times 37.5 = 7500 \, €$, then pays $15 \times 35 = 525 \, €$ - Gives $7175 \, €$
Comments on the one-price balancing markets

- The total payment/revenue of day-ahead market participants for deviations from schedule equals the revenue/payment of the balancing generators.

- Regarding deviations:

 - if one's own deviation contributes to setting the system off-balance (e.g., generator overproduce while there is too much power overall), this leads to a loss.

 - but...

 - if one's own deviation is of the helping the system go back to balance (e.g., generator overproduce while there is a lack of power overall), this leads to extra profit(!)

- What could be the consequences?

- And, how could we fix that?
The two-price imbalance settlement

Basic properties: (well, the same for market clearing)

$$\Delta P > 0 \quad \Delta P \sim 0 \quad \Delta P < 0$$

$$\lambda^B > \lambda^S \quad \lambda^B = \lambda^S \quad \lambda^B < \lambda^S$$

Settlement is rethought:

→ those putting the system off-balance are to be penalized
→ those supporting the system (unintentionally) will not get extra rewards

- $\Delta P > 0$:
 - Generator i producing less than scheduled must buy $\hat{y}_i^G - y_i^G$ at price λ^B
 - Demand j consuming more than scheduled must buy $\hat{y}_j^D - y_j^D$ at price λ^B
 - Generator i producing more than scheduled must sell $y_i^G - \hat{y}_i^G$ at price λ^S
 - Demand j consuming less than scheduled must sell $y_j^D - \hat{y}_j^D$ at price λ^S

- $\Delta P < 0$: ... basically, the opposite type of reasoning

- Meanwhile, balancing generators simply sell or buy at price λ^B
Example case 1: Outage of G_5

“Even though scheduled, the unit G_5 of KøbenhavnCHP will be down during that hour, and the operator could not get a match in the intra-day market...”

- All others are producing and consuming as planned.

- For the **balancing auction**, one has:

 - $\Delta P = 60$ MWh (since demand is higher than generation by 60 MWh for that hour)
 - $\lambda^B = 45$ €/MWh
 - Scheduled balancing generators: B_1 and B_2 (only 30 MWh upward)
Example case 1: Outage of G_5

“Even though scheduled, the unit G_5 of KøbenhavnCHP will be down during that hour, and the operator could not get a match in the intra-day market…”

- All others are producing and consuming as planned.

- For the **balancing auction**, one has:
 - $\Delta P = 60$ MWh (since demand is higher than generation by 60 MWh for that hour)
 - $\lambda^B = 45$ €/MWh
 - Scheduled balancing generators: B_1 and B_2 (only 30 MWh upward)

- The **settlement** leads to:
 - G_5 paying $60 \times 45 = 2700$ €
 - B_1 ($/G_3$) and B_2 each receiving $30 \times 45 = 1350$ €

- Considering **both day-ahead and balancing** stages:
 - G_5 receives $60 \times 37.5 = 2250$ €, and has to pay $60 \times 45 = 2700$ €... That is a loss of 450 €(!)
 - B_1 ($/G_3$) receives $200 \times 37.5 = 7500$ € (day-ahead) and $30 \times 45 = 1350$ € at the balancing stage
Example case 2: Wind forecast errors

“For both wind farms G_1 and G_2 (operated by RT® and WeTrustInWind), the actual generation is not equal to that foreseen when clearing the day-ahead market, i.e.”

- for G_1: $\hat{y}_1^G = 50$ MWh but actual generation is $y_1^G = 30$ MWh
- for G_2: $\hat{y}_1^G = 120$ MWh but actual generation is $y_1^G = 155$ MWh

All others are producing and consuming as planned.

For the **balancing auction**, one has:

- $\Delta P = -15$ MWh (since generation is higher than demand by 15 MWh for that hour)
- $\lambda^B = 35$ €/MWh (while day-ahead price is $\lambda^S = 37.5$ €/MWh)
- Scheduled balancing generators: B_1 (only 15 MWh downward)
Example case 2: Wind forecast errors

“For both wind farms G_1 and G_2 (operated by RT® and WeTrustInWind), the actual generation is not equal to that foreseen when clearing the day-ahead market, i.e.”

- for G_1: $\hat{y}_1^G = 50$ MWh but actual generation is $y_1^G = 30$ MWh
- for G_2: $\hat{y}_1^G = 120$ MWh but actual generation is $y_1^G = 155$ MWh

All others are producing and consuming as planned.

For the balancing auction, one has:

- $\Delta P = -15$ MWh (since generation is higher than demand by 15 MWh for that hour)
- $\lambda^B = 35$ €/MWh (while day-ahead price is $\lambda^S = 37.5$ €/MWh)
- Scheduled balancing generators: B_1 (only 15 MWh downward)

The settlement leads to:

- G_1 paying $20 \times 37.5 = 750$ € (instead of 700 € in the one-price case)
- G_2 receiving $35 \times 35 = 1225$ €
- B_1 ($/G_3$) paying $15 \times 35 = 525$ €

Considering both day-ahead and balancing stages:

- G_1 receives $50 \times 37.5 = 1875$ €, then pays $20 \times 37.5 = 750$ € - Gives 1050 €
- G_2 receives $120 \times 37.5 = 4500$ €, then receives again $35 \times 35 = 1225$ € - Gives 5775 €
- B_1 ($/G_3$) receives $200 \times 37.5 = 7500$ €, then pays $15 \times 35 = 525$ € - Gives 7175 €
Use the self-assessment quizz to check your understanding!