Module 3 – Intra-day and Balancing Markets

3.5 One-price vs. two-price settlement

The one-price imbalance settlement

Basic properties:

$$\Delta P > 0$$
 $\Delta P \sim 0$ $\Delta P < 0$ $\lambda^B > \lambda^S$ $\lambda^B = \lambda^S$ $\lambda^B < \lambda^S$

Consequences on settlement for those dispatched through the day-ahead market:

- $\Delta P > 0$:
 - Generator *i* producing less than scheduled must buy $\hat{y}_i^G y_i^G$ at price λ^B
 - Demand j consuming more than scheduled must buy $\hat{y}_j^D y_j^D$ at price λ^B
 - Generator i producing more than scheduled must sell $y_i^{\mathcal{G}} \hat{y}_i^{\mathcal{G}}$ at price $\lambda^{\mathcal{B}}$
 - Demand j consuming less than scheduled must sell $y_j^D \hat{y}_j^D$ at price λ^B
- ullet $\Delta P < 0$: ... basically, the same type of reasoning
- ullet Meanwhile, balancing generators simply sell or buy at price λ^B

"Even though scheduled, the unit G_5 of KøbenhavnCHP will be down during that hour, and the operator could not get a match in the intra-day market..."

• All others are producing and consuming as planned.

- All others are producing and consuming as planned.
- For the **balancing auction**, one has:
 - $\Delta P = 60$ MWh (since demand is higher than generation by 60 MWh for that hour)
 - $\lambda^B = 45 \in /MWh$
 - \bullet Scheduled balancing generators: B_1 and B_2 (only 30 MWh upward)

- All others are producing and consuming as planned.
- For the **balancing auction**, one has:
 - $\Delta P = 60$ MWh (since demand is higher than generation by 60 MWh for that hour)
 - $\lambda^B = 45 \in /MWh$
 - Scheduled balancing generators: B₁ and B₂ (only 30 MWh upward)
- The **settlement** leads to:
 - G_5 paying $60 \times 45 = 2700$ €
 - $B_1(/G_3)$ and B_2 each receiving $30 \times 45 = 1350 \in$

- All others are producing and consuming as planned.
- For the **balancing auction**, one has:
 - ullet $\Delta P=60$ MWh (since demand is higher than generation by 60 MWh for that hour)
 - $\lambda^B = 45 \in /MWh$
 - ullet Scheduled balancing generators: B_1 and B_2 (only 30 MWh upward)
- The settlement leads to:
 - G_5 paying $60 \times 45 = 2700$ €
 - $B_1(/G_3)$ and B_2 each receiving $30 \times 45 = 1350 \in$
- Considering both day-ahead and balancing stages:
 - G_5 receives $60 \times 37.5 = 2250 \in$, and has to pay $60 \times 45 = 2700 \in$... That is a loss of $450 \in (!)$
 - B_1 (/ G_3) receives $200 \times 37.5 = 7500 \in$ (day-ahead) and $30 \times 45 = 1350 \in$ at the balancing stage

- for G_1 : $\hat{y}_1^G = 50$ MWh but actual generation is $y_1^G = 30$ MWh
- for G_2 : $\hat{y}_2^G = 120$ MWh but actual generation is $y_2^G = 155$ MWh
- All others are producing and consuming as planned.

- for G_1 : $\hat{y}_1^G = 50$ MWh but actual generation is $y_1^G = 30$ MWh
- for G_2 : $\hat{y}_2^G = 120$ MWh but actual generation is $y_2^G = 155$ MWh
- All others are producing and consuming as planned.
- For the **balancing auction**, one has:
 - $\Delta P = -15$ MWh (since generation is higher that demand by 15 MWh for that hour)
 - $\lambda^B = 35 \in /MWh$
 - Scheduled balancing generators: B₁ (only 15 MWh downward)

- for G_1 : $\hat{y}_1^G = 50$ MWh but actual generation is $y_1^G = 30$ MWh
- for G_2 : $\hat{y}_2^G = 120$ MWh but actual generation is $y_2^G = 155$ MWh
- All others are producing and consuming as planned.
- For the balancing auction, one has:
 - $\Delta P = -15$ MWh (since generation is higher that demand by 15 MWh for that hour)
 - $\lambda^B = 35 \in /MWh$
 - Scheduled balancing generators: B₁ (only 15 MWh downward)
- The settlement leads to:
 - G_1 paying $20 \times 35 = 700$ €
 - *G*₂ receiving 35 × 35 = 1225 €
 - B_1 paying $15 \times 35 = 525 \in$
- Considering both day-ahead and balancing stages:
 - G_1 receives $50 \times 37.5 = 1875 \in$, then pays $20 \times 35 = 700 \in$ Gives $1175 \in$
 - G_2 receives $120 \times 37.5 = 4500 \in$, then receives again $35 \times 35 = 1225 \in$ Gives 5775 \in
 - B_1 ($/G_3$) receives $200 \times 37.5 = 7500 \in$, then pays $15 \times 35 = 525 \in$ Gives $7175 \in$

Comments on the one-price balancing markets

- The total payment/revenue of day-ahead market participants for deviations from schedule equals the revenue/payment of the balancing generators
- Regarding deviations:
 - if one's own deviation contributes to setting the system off-balance (e.g., generator overproduce while there is too much power overall), this leads to a loss
 - but...
 - if one's own deviation is of the *helping the system go back to balance* (e.g., generator overproduce while there is a lack of power overall), **this leads to extra profit(!)**
- What could be the consequences?
- And, how could we fix that?

The two-price imbalance settlement

DTU

Basic properties: (well, the same for market clearing)

$$\Delta P > 0$$
 $\Delta P \sim 0$ $\Delta P < 0$ $\lambda^B > \lambda^S$ $\lambda^B = \lambda^S$ $\lambda^B < \lambda^S$

Settlement is rethought:

- ightarrow those putting the system off-balance are to be penalized
- ightarrow those supporting the system (unintentionally) will not get extra rewards
 - $\Delta P > 0$:
 - Generator *i* producing less than scheduled must buy $\hat{y}_i^G y_i^G$ at price λ^B
 - Demand j consuming more than scheduled must buy $\hat{y}_j^D y_j^D$ at price λ^B
 - Generator i producing more than scheduled must sell $y_i^{\mathcal{G}} \hat{y}_i^{\mathcal{G}}$ at price $\lambda^{\mathcal{S}}$
 - Demand j consuming less than scheduled must sell $y_i^D \hat{y}_i^D$ at price λ^S
 - ullet $\Delta P <$ 0: ... basically, the opposite type of reasoning
 - ullet Meanwhile, balancing generators simply sell or buy at price λ^B

- All others are producing and consuming as planned.
- For the **balancing auction**, one has:
 - $\Delta P = 60$ MWh (since demand is higher than generation by 60 MWh for that hour)
 - $\lambda^B = 45 \in /MWh$
 - Scheduled balancing generators: B₁ and B₂ (only 30 MWh upward)

- All others are producing and consuming as planned.
- For the **balancing auction**, one has:
 - ullet $\Delta P=60$ MWh (since demand is higher than generation by 60 MWh for that hour)
 - $\lambda^B = 45 \in /MWh$
 - ullet Scheduled balancing generators: B_1 and B_2 (only 30 MWh upward)
- The settlement leads to:
 - G_5 paying $60 \times 45 = 2700$ €
 - $B_1(/G_3)$ and B_2 each receiving $30 \times 45 = 1350 \in$
- Considering both day-ahead and balancing stages:
 - G_5 receives $60 \times 37.5 = 2250 \in$, and has to pay $60 \times 45 = 2700 \in$... That is a loss of $450 \in (!)$
 - B_1 (/ G_3) receives $200 \times 37.5 = 7500 \in$ (day-ahead) and $30 \times 45 = 1350 \in$ at the balancing stage

- for G_1 : $\hat{y}_1^G = 50$ MWh but actual generation is $y_1^G = 30$ MWh
- for G_2 : $\hat{y}_1^G = 120$ MWh but actual generation is $y_1^G = 155$ MWh
- All others are producing and consuming as planned.
- For the **balancing auction**, one has:
 - $\Delta P = -15$ MWh (since generation is higher than demand by 15 MWh for that hour)
 - $\lambda^B = 35 \in /MWh$ (while day-ahead price is $\lambda^S = 37.5 \in /MWh$)
 - \bullet Scheduled balancing generators: B_1 (only 15 MWh downward)

- for G_1 : $\hat{y}_1^G = 50$ MWh but actual generation is $y_1^G = 30$ MWh
- ullet for \emph{G}_2 : $\hat{\emph{y}}_1^{\it G}=120$ MWh but actual generation is $\emph{y}_1^{\it G}=155$ MWh
- All others are producing and consuming as planned.
- For the balancing auction, one has:
 - $\Delta P = -15$ MWh (since generation is higher than demand by 15 MWh for that hour)
 - $\lambda^B = 35 \in /MWh$ (while day-ahead price is $\lambda^S = 37.5 \in /MWh$)
 - Scheduled balancing generators: B₁ (only 15 MWh downward)
- The settlement leads to:
 - G_1 paying $20 \times 37.5 = 750 \in \text{(instead of } 700 \in \text{in the one-price case)}$
 - G_2 receiving $35 \times 35 = 1225$ €
 - $B_1(/G_3)$ paying $15 \times 35 = 525$ €
- Considering both day-ahead and balancing stages:
 - G_1 receives $50 \times 37.5 = 1875$ €, then pays $20 \times 37.5 = 750$ € Gives 1050 €
 - G_2 receives $120 \times 37.5 = 4500 \in$, then receives again $35 \times 35 = 1225 \in$ Gives 5775 \in
 - B_1 (/ G_3) receives $200 \times 37.5 = 7500$ \in , then pays $15 \times 35 = 525$ \in Gives 7175 \in

Use the self-assessment quizz to check your understanding!

