Module 3 - Intra-day and Balancing Markets

3.4 Balancing market operation and clearing

Setting the scene

- From the (previously cleared) day-ahead market:
- Balance of generation and consumption at quantity: P^{S}
- Day ahead price: λ^{S}
- Generators' schedules: $\hat{y}_{j}^{G}, j=1, \ldots, N_{G}$
- Demands' schedules: $\hat{y}_{i}^{D}, i=1, \ldots, N_{D}$
- Then reaching the balancing market:
- Imbalance to be handled: ΔP
- Assume N_{B} balancing generators, able to move both up (\uparrow) and down $(\downarrow) \ldots$
- Their offers:
- Upward regulation: P_{j}^{\uparrow}, at price $\lambda_{j}^{\uparrow}, j=1, \ldots, N_{B}$
- Downward regulation: P_{j}^{\downarrow}, at price $\lambda_{j}^{\downarrow}, j=1, \ldots, N_{B}$
- One necessarily has:
- $\lambda_{j}^{\uparrow}>\lambda^{s}, j=1, \ldots, N_{B}$
- $\lambda_{j}^{\downarrow}<\lambda^{s},, j=1, \ldots, N_{B}$

Day-ahead market clearing results

- After market clearing (from Module 2), the supply and demand schedules are:

Supply id.	Schedule (MWh)	Demand id.	Schedule (MWh)
G_{1}	120	D_{1}	250
G_{2}	50	D_{2}	300
G_{3}	200	D_{3}	120
G_{4}	400	D_{4}	80
G_{5}	60	D_{5}	40
G_{6}	50	D_{6}	70
G_{7}	60	D_{7}	60
G_{8}	55	D_{8}	45
$\mathrm{G}_{9}-\mathrm{G}_{15}$	0	D_{9}	30
		$D_{10}-\mathrm{D}_{12}$	0

- The system price is of $37.5 € / \mathrm{MWh}$, corresponding to the price offer of G_{8}

Example list of balancing offers

- Deadline for offers: $30^{\text {th }}$ of January, 10:15 - Delivery period: $30^{\text {th }}$ of January, 11:00-12:00
- Balancing offers include:

Company	id	$P_{j}^{\uparrow}(\mathrm{MWh})$	$\lambda_{j}^{\uparrow}(€ / \mathrm{MWh})$	$P_{j}^{\downarrow}(\mathrm{MWh})$	$\lambda_{j}^{\downarrow}(€ / \mathrm{MWh})$
BlueHydro*	$\mathrm{B}_{1}\left(/ \mathrm{G}_{3}\right)$	30	40	20	35
LastMinute	B_{2}	40	45	30	25
FlexiFast	B_{3}	25	60	30	32
DirtyPower*	$\mathrm{B}_{4}\left(/ \mathrm{G}_{8}\right)$	20	80	50	15

*already scheduled after day-ahead market clearing

- Here, only generators offer balancing - Demand could actually also contribute...

Graphically as a supply curve...

- This is the same type of supply curves than for day-ahead auctions, except that:
- offers are for adjustment from the day-ahead quantity P^{S} (both upward and downward)
- demand is here seen as inelastic (so, no demand curve - or seen as a vertical straight line)

Intuitively, two possible situations

$$
\Delta P>0
$$

(we need extra energy in the system)

$$
\Delta P<0
$$

(we have too much energy in the system)

Writing the balancing auction as an LP

- Similarly to the day-market clearing, the auction can be solved through a Linear Program (LP):

$$
\begin{array}{ll}
\min _{\left\{y_{j}^{\uparrow}\right\},\left\{y_{j}^{\downarrow}\right\}} & \sum_{j} \lambda_{j}^{\uparrow} y_{j}^{\uparrow}-\lambda_{j}^{\downarrow} y_{j}^{\downarrow} \\
\text { subject to } & \sum_{j} y_{j}^{\uparrow}-y_{j}^{\downarrow}=\Delta P: \lambda^{B} \\
& 0 \leq y_{i}^{\uparrow} \leq P_{i}^{\uparrow}, j=1, \ldots, N_{B} \\
& 0 \leq y_{j}^{\downarrow} \leq P_{j}^{\downarrow}, j=1, \ldots, N_{B}
\end{array}
$$

- The balancing price λ^{B} can then be obtained by solving the dual LP
- It corresponds to the lagrange multiplier for the updated balance equation

Use the self-assessment quizz to check your understanding!

