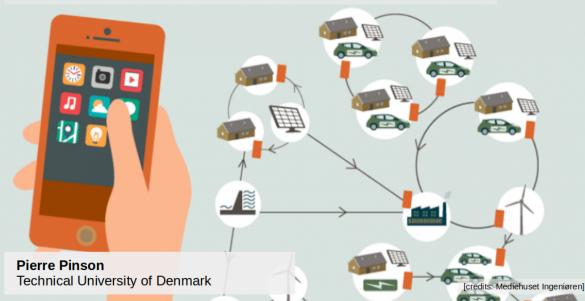
Module 3 – Intra-day and Balancing Markets

3.4 Balancing market operation and clearing



Setting the scene

DTU

• From the (previously cleared) day-ahead market:

- Balance of generation and consumption at quantity: P^{S}
- Day ahead price: λ^{S}
- Generators' schedules: $\hat{y}_{j}^{G}, j = 1, \dots, N_{G}$
- Demands' schedules: \hat{y}_i^D , $i = 1, ..., N_D$
- Then reaching the balancing market:
 - Imbalance to be handled: ΔP
 - Assume N_B balancing generators, able to move both up (\uparrow) and down (\downarrow)...

• Their offers:

- Upward regulation: P_j^{\uparrow} , at price $\lambda_j^{\uparrow}, \ j=1,\ldots,N_B$
- Downward regulation: P_j^{\downarrow} , at price λ_j^{\downarrow} , $j = 1, \dots, N_B$

• One necessarily has:

• $\lambda_j^{\uparrow} > \lambda^S$, $j = 1, \dots, N_B$ • $\lambda_i^{\downarrow} < \lambda^S$, $j = 1, \dots, N_B$

Day-ahead market clearing results

Supply id.	Schedule (MWh)	Demand id.	Schedule (MWh)
G_1	120	D_1	250
G_2	50	D ₂	300
G ₃	200	D ₃	120
G ₄	400	D ₄	80
G_5	60	D ₅	40
G_6	50	D ₆	70
G ₇	60	D ₇	60
G ₈	55	D ₈	45
$G_{9}-G_{15}$	0	D ₉	30
		D ₁₀ -D ₁₂	0

• After market clearing (from Module 2), the supply and demand schedules are:

• The system price is of 37.5 \in /MWh, corresponding to the price offer of G_8

- Deadline for offers: 30th of January, 10:15 Delivery period: 30th of January, 11:00-12:00
- Balancing offers include:

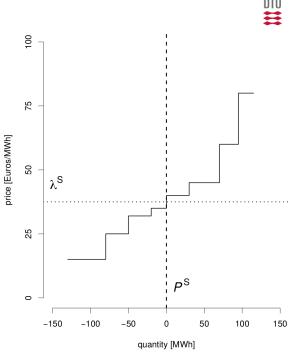
Company	id	P_j^{\uparrow} (MWh)	λ_j^{\uparrow} (€/MWh)	P_j^\downarrow (MWh)	λ_j^{\downarrow} (\in /MWh)
BlueHydro*	$B_1 (/G_3)$	30	40	20	35
LastMinute	B ₂	40	45	30	25
FlexiFast	B ₃	25	60	30	32
DirtyPower*	$B_4~(/G_8)$	20	80	50	15

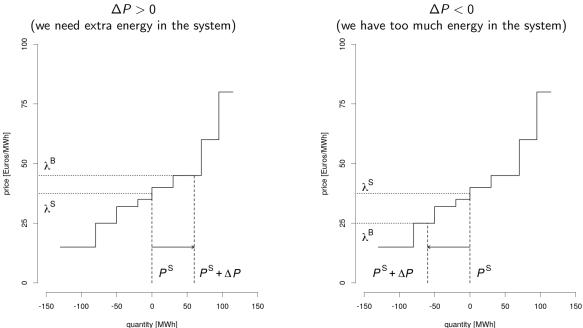
* already scheduled after day-ahead market clearing

• Here, only generators offer balancing - Demand could actually also contribute...

Graphically as a supply curve...

- This is the same type of supply curves than for day-ahead auctions, except that:
 - offers are for *adjustment* from the day-ahead quantity *P*^S (both upward and downward)
 - demand is here seen as inelastic (so, no demand curve - or seen as a vertical straight line)





Writing the balancing auction as an LP

• Similarly to the day-market clearing, the auction can be solved through a Linear Program (LP):

$$\begin{array}{ll} \min_{\{y_j^{\uparrow}\},\{y_j^{\downarrow}\}} & \sum_j \lambda_j^{\uparrow} y_j^{\uparrow} - \lambda_j^{\downarrow} y_j^{\downarrow} \\ \text{subject to} & \sum_j y_j^{\uparrow} - y_j^{\downarrow} = \Delta P \; : \; \lambda^B \\ & 0 \leq y_i^{\uparrow} \leq P_i^{\uparrow}, \; j = 1, \dots, N_B \\ & 0 \leq y_j^{\downarrow} \leq P_j^{\downarrow}, \; j = 1, \dots, N_B \end{array}$$

- $\bullet\,$ The balancing price λ^B can then be obtained by solving the dual LP
- It corresponds to the lagrange multiplier for the updated balance equation

Use the self-assessment quizz to check your understanding!

