Module 3 – Intra-day and Balancing Markets

3.3 Balancing market and imbalance definition

Pierre Pinson
Technical University of Denmark
Passing the ball to the Transmission System Operator (TSO)

The Nordic Power Exchange
Nord Pool

Spot market
Elspot

A day-ahead market
One-hour contracts
Auction trade

Price
Demand
Supply
Spot price
MWh

Intra day market
Elbas

An hour-ahead market
One-hour contracts
Continuous electronic trade

Bid/Ask

A real time market
Supply- and demand-side bidding
Priority lists

Price
MWh

Prior to hour of operation

During hour of operation

[source: Nord Pool A/S]
The balancing market(s)

- The TSO has the **ultimate responsibility** to keep its **transmission system in balance**

- For instance in Denmark, Energinet’s transmission system covers
 - Transmission grid at the highest voltage level 400 kV
 - Regional electricity transmission grid on 132 kV east of the Great Belt and 150 kV west of the Great Belt
The balancing market(s)

- The TSO has the **ultimate responsibility** to keep its **transmission system in balance**
- For instance in Denmark, Energinet’s transmission system covers:
 - Transmission grid at the highest voltage level 400 kV
 - Regional electricity transmission grid on 132 kV east of the Great Belt and 150 kV west of the Great Belt

- The balancing stage combines (though we eventually see it as a single market mechanism):
 - *regulation market*, for the TSO to obtain necessary regulating power prior to the delivery hour
 - *balancing market*, linked to the real-time operations, and yielding balancing payments based on actual metering

- This also links to some *ancillary services* (i.e., tertiary/manual reserves) that the TSO purchases

[See, e.g., Energinet’s regulation C2: *The balancing market and balance settlement*]
Who participates in these balancing market(s)?

Regulation market:

“A participant in the regulation market is offering to buy or sell regulating power, prior to the hour of operations”

- the TSO, aiming to purchase regulating power
- actors of the power systems, who *voluntarily* propose regulating power
- those who *committed* to provide regulating power (through the reserve provision mechanism)
- for Scandinavia, these resources are shared through the NOIS list (*Nordic Operational Information System*)

Balancing market:

“A participant in the balancing market is to cover the costs of his contribution to placing the system off-balance”

- the TSO, responsible for the metering and settlement
- all actors of the power system in the control area of the TSO
Is the system in imbalance?

There may be 3 possible situations, for the system as a whole:

- **Positive imbalance**: Supply > Demand → need for *downward regulation*
- **Negative imbalance**: Supply < Demand → need for *upward regulation*
- **No imbalance**: Supply ~ Demand → *no need for regulation*

Similarly, supply and demand participants may also have positive and negative imbalance:

- **Positive imbalance**: Actual generation > Scheduled generation (if supply) or ...
- **Negative imbalance**: Actual generation < Scheduled generation (if supply) or ...
- **No imbalance**: Actual generation ~ Scheduled generation (if supply) or ...
Starting from our day-ahead market clearing...

After day-ahead market clearing, the supply and demand schedules are:

<table>
<thead>
<tr>
<th>Supply id.</th>
<th>Schedule (MWh)</th>
<th>Demand id.</th>
<th>Schedule (MWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G₁</td>
<td>120</td>
<td>D₁</td>
<td>250</td>
</tr>
<tr>
<td>G₂</td>
<td>50</td>
<td>D₂</td>
<td>300</td>
</tr>
<tr>
<td>G₃</td>
<td>200</td>
<td>D₃</td>
<td>120</td>
</tr>
<tr>
<td>G₄</td>
<td>400</td>
<td>D₄</td>
<td>80</td>
</tr>
<tr>
<td>G₅</td>
<td>60</td>
<td>D₅</td>
<td>40</td>
</tr>
<tr>
<td>G₆</td>
<td>50</td>
<td>D₆</td>
<td>70</td>
</tr>
<tr>
<td>G₇</td>
<td>60</td>
<td>D₇</td>
<td>60</td>
</tr>
<tr>
<td>G₈</td>
<td>55</td>
<td>D₈</td>
<td>45</td>
</tr>
<tr>
<td>G₉₋G₁₅</td>
<td>0</td>
<td>D₉</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D₁₀₋D₁₂</td>
<td>0</td>
</tr>
</tbody>
</table>
Negative imbalances

SCHEDULE

- 120 MWh
- \(G_1\)
- \(\vdots\)
- 55 MWh
- \(G_8\)

Total: 995 MWh

ACTUAL

- 100 MWh (negative imbalance)
- \(G_1\)
- \(\vdots\)
- 55 MWh
- \(G_8\)

Total: 975 MWh (negative imbalance)
Positive imbalances

SCHEDULE

120 MWh

G₁

Total: 995 MWh

G₈

55 MWh

ACTUAL

140 MWh (positive imbalance)

G₁

Total: 1015 MWh (positive imbalance)

G₈

55 MWh
Positive and negative imbalances

SCHEDULE

- 120 MWh
- \(G_1 \)
- \(G_8 \)
- 55 MWh

Total: 995 MWh

ACTUAL

- 140 MWh \((\text{positive imbalance}) \)
- \(G_1 \)
- \(G_8 \)
- 45 MWh \((\text{negative imbalance}) \)

Total: 1005 MWh \((\text{positive imbalance}) \)
Use the self-assessment quizz to check your understanding!