Module 3 – Intra-day and Balancing Markets

3.3 Balancing market and imbalance definition

Passing the ball to the Transmission System Operator (TSO)

[source: Nord Pool A/S]

The balancing market(s)

DTU

- The TSO has the ultimate responsibility to keep its transmission system in balance
- For instance in Denmark, Energinet's transmission system covers
 - Transmission grid at the highest voltage level 400 kV
 - Regional electricity transmission grid on 132 kV east of the Great Belt and 150 kV west of the Great Belt

The balancing market(s)

DTU

- The TSO has the **ultimate responsibility** to keep its **transmission system in balance**
- For instance in Denmark, Energinet's transmission system covers
 - \bullet Transmission grid at the highest voltage level 400 kV
 - Regional electricity transmission grid on 132 kV east of the Great Belt and 150 kV west of the Great Belt

- The balancing stage combines (though we eventually see it as a single market mechanism):
 - regulation market, for the TSO to obtain necessary regulating power prior to the delivery hour
 - balancing market, linked to the real-time operations, and yielding balancing payments based on actual metering
- This also links to some ancillary services (i.e., tertiary/manual reserves) that the TSO purchases

Who participates in these balancing market(s)?

Regulation market:

"A participant in the regulation market is offering to buy or sell regulating power, prior to the hour of operations"

- the TSO, aiming to purchase regulating power
- actors of the power systems, who voluntarily propose regulating power
- those who committed to provide regulating power (through the reserve provision mechanism)
- for Scandinavia, these resources are shared through the NOIS list (Nordic Operational Information System)

Balancing market:

"A participant in the balancing market is to cover the costs of his contribution to placing the system off-balance"

- the TSO, responsible for the metering and settlement
- all actors of the power system in the control area of the TSO

Is the system in imbalance?

- There may be 3 possible situations, for the system as a whole:
 - $\bullet \ \textbf{Positive imbalance} : \ \mathsf{Supply} > \mathsf{Demand} \to \mathsf{need for} \ \textit{downward regulation} \\$
 - ullet Negative imbalance: Supply < Demand o need for upward regulation
 - \bullet No imbalance: Supply \sim Demand \rightarrow no need for regulation

Downward regulation

- Similarly, supply and demand participants may also have positive and negative imbalance:
 - Positive imbalance: Actual generation > Scheduled generation (if supply) or ...
 - Negative imbalance: Actual generation < Scheduled generation (if supply) or ...
 - \bullet No imbalance: Actual generation \sim Scheduled generation (if supply) or

. . .

Starting from our day-ahead market clearing...

• After day-ahead market clearing, the supply and demand schedules are:

Supply id.	Schedule (MWh)	Demand id.	Schedule (MWh)
G_1	120	D_1	250
G_2	50	D_2	300
G_3	200	D_3	120
G_4	400	D_4	80
G_5	60	D_5	40
G ₆ G ₇	50	D_6	70
G ₇	60	D_7	60
G ₈	55	D ₈	45
G ₉ -G ₁₅	0	D ₉	30
		D ₁₀ -D ₁₂	0

Negative imbalances

Positive imbalances

Positive and negative imbalances

ACTUAL 140 MWh (*positive imbalance*) Total: 1005 MWh (positive G, imbalance) G_8 **45** MWh (negative imbalance)

Use the self-assessment quizz to check your understanding!

