Module 2 – Electricity Spot Markets (e.g. day-ahead)

2.3 From prices to settlement

Pierre Pinson
Technical University of Denmark
Settlement process

- After energy schedules and the system price are determined, comes the settlement process...

- Using everyday terms:
 - who should pay what?
 - who should get paid, and what amount?

(Obviously, only those with energy production or consumption scheduled are concerned)

- Any opinion?
Settlement process

- After energy schedules and the system price are determined, comes the settlement process...

- Using everyday terms:
 - who should pay what?
 - who should get paid, and what amount?

(Obviously, only those with energy production or consumption scheduled are concerned)

- Any opinion?

- The two main approaches to settlement rely on
 - pay-as-bid pricing
 - uniform pricing
Our example auction setup

Supply: (for a total of 1435 MWh)

<table>
<thead>
<tr>
<th>Company</th>
<th>Supply/Demand</th>
<th>id</th>
<th>P_j^G (MWh)</th>
<th>λ_j^G (€/MWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RT®</td>
<td>Supply</td>
<td>G_1</td>
<td>120</td>
<td>0</td>
</tr>
<tr>
<td>WeTrustInWind</td>
<td>Supply</td>
<td>G_2</td>
<td>50</td>
<td>0</td>
</tr>
<tr>
<td>BlueHydro</td>
<td>Supply</td>
<td>G_3</td>
<td>200</td>
<td>15</td>
</tr>
<tr>
<td>RT®</td>
<td>Supply</td>
<td>G_4</td>
<td>400</td>
<td>30</td>
</tr>
<tr>
<td>KøbenhavnCHP</td>
<td>Supply</td>
<td>G_5</td>
<td>60</td>
<td>32.5</td>
</tr>
<tr>
<td>KøbenhavnCHP</td>
<td>Supply</td>
<td>G_6</td>
<td>50</td>
<td>34</td>
</tr>
<tr>
<td>KøbenhavnCHP</td>
<td>Supply</td>
<td>G_7</td>
<td>60</td>
<td>36</td>
</tr>
<tr>
<td>DirtyPower</td>
<td>Supply</td>
<td>G_8</td>
<td>100</td>
<td>37.5</td>
</tr>
<tr>
<td>DirtyPower</td>
<td>Supply</td>
<td>G_9</td>
<td>70</td>
<td>39</td>
</tr>
<tr>
<td>DirtyPower</td>
<td>Supply</td>
<td>G_{10}</td>
<td>50</td>
<td>40</td>
</tr>
<tr>
<td>RT®</td>
<td>Supply</td>
<td>G_{11}</td>
<td>70</td>
<td>60</td>
</tr>
<tr>
<td>RT®</td>
<td>Supply</td>
<td>G_{12}</td>
<td>45</td>
<td>70</td>
</tr>
<tr>
<td>SafePeak</td>
<td>Supply</td>
<td>G_{13}</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>SafePeak</td>
<td>Supply</td>
<td>G_{14}</td>
<td>60</td>
<td>150</td>
</tr>
<tr>
<td>SafePeak</td>
<td>Supply</td>
<td>G_{15}</td>
<td>50</td>
<td>200</td>
</tr>
</tbody>
</table>
Our example auction setup

Demand: (for a total of 1065 MWh)

<table>
<thead>
<tr>
<th>Company</th>
<th>Supply/Demand</th>
<th>id</th>
<th>P_i^D (MWh)</th>
<th>λ_i^D (€/MWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CleanRetail</td>
<td>Demand</td>
<td>D_1</td>
<td>250</td>
<td>200</td>
</tr>
<tr>
<td>El4You</td>
<td>Demand</td>
<td>D_2</td>
<td>300</td>
<td>110</td>
</tr>
<tr>
<td>EVcharge</td>
<td>Demand</td>
<td>D_3</td>
<td>120</td>
<td>100</td>
</tr>
<tr>
<td>QualiWatt</td>
<td>Demand</td>
<td>D_4</td>
<td>80</td>
<td>90</td>
</tr>
<tr>
<td>IntelliWatt</td>
<td>Demand</td>
<td>D_5</td>
<td>40</td>
<td>85</td>
</tr>
<tr>
<td>El4You</td>
<td>Demand</td>
<td>D_6</td>
<td>70</td>
<td>75</td>
</tr>
<tr>
<td>CleanRetail</td>
<td>Demand</td>
<td>D_7</td>
<td>60</td>
<td>65</td>
</tr>
<tr>
<td>IntelliWatt</td>
<td>Demand</td>
<td>D_8</td>
<td>45</td>
<td>40</td>
</tr>
<tr>
<td>QualiWatt</td>
<td>Demand</td>
<td>D_9</td>
<td>30</td>
<td>38</td>
</tr>
<tr>
<td>IntelliWatt</td>
<td>Demand</td>
<td>D_{10}</td>
<td>35</td>
<td>31</td>
</tr>
<tr>
<td>CleanRetail</td>
<td>Demand</td>
<td>D_{11}</td>
<td>25</td>
<td>24</td>
</tr>
<tr>
<td>El4You</td>
<td>Demand</td>
<td>D_{12}</td>
<td>10</td>
<td>16</td>
</tr>
</tbody>
</table>
Market clearing results

After market clearing, the supply and demand schedules are:

<table>
<thead>
<tr>
<th>Supply id.</th>
<th>Schedule (MWh)</th>
<th>Demand id.</th>
<th>Schedule (MWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G_1</td>
<td>120</td>
<td>D_1</td>
<td>250</td>
</tr>
<tr>
<td>G_2</td>
<td>50</td>
<td>D_2</td>
<td>300</td>
</tr>
<tr>
<td>G_3</td>
<td>200</td>
<td>D_3</td>
<td>120</td>
</tr>
<tr>
<td>G_4</td>
<td>400</td>
<td>D_4</td>
<td>80</td>
</tr>
<tr>
<td>G_5</td>
<td>60</td>
<td>D_5</td>
<td>40</td>
</tr>
<tr>
<td>G_6</td>
<td>50</td>
<td>D_6</td>
<td>70</td>
</tr>
<tr>
<td>G_7</td>
<td>60</td>
<td>D_7</td>
<td>60</td>
</tr>
<tr>
<td>G_8</td>
<td>55</td>
<td>D_8</td>
<td>45</td>
</tr>
<tr>
<td>G_9-G_{15}</td>
<td>0</td>
<td>D_9</td>
<td>30</td>
</tr>
</tbody>
</table>

D_{10}-D_{12} | 0

The system price is of 37.5 €/MWh, corresponding to the price offer of G_8.

Settlement with pay-as-bid pricing

- How does that work? For those scheduled,

 - **Consumption side:** $R_{i}^{DA,D} = -\lambda_{i}^{D} y_{i}^{D}$, $R_{i}^{DA,D} \leq 0$, (since being a payment)
 - **Supply side:** $R_{j}^{DA,G} = \lambda_{j}^{G} y_{j}^{G}$, $R_{j}^{DA,G} \geq 0$ (since being a revenue)

Payment and revenues for our example market clearing

- **Consumption side (payments):**
 - D_1 pays $250 \times 200 = 50000$ €, $(R_{1}^{DA,D} = -50000)$
 - D_2 pays $300 \times 110 = 33000$ €, $(R_{2}^{DA,D} = -33000)$, etc.
 - D_9 pays $30 \times 38 = 1140$ €, $(R_{9}^{DA,D} = -1140)$

- **Supply side (revenues):**
 - G_1 receives $120 \times 0 = 0$ €, $(R_{1}^{DA,G} = 0)$
 - G_2 receives $50 \times 0 = 0$ €, $(R_{2}^{DA,G} = 0)$, etc.
 - G_8 receives $55 \times 37.5 = 2062.5$ €, $(R_{8}^{DA,G} = 2062.5)$
Settlement with pay-as-bid pricing

- How does that work? For those scheduled,
 - Consumption side: \(R_{i}^{DA,D} = -\lambda_{i}^{D} y_{i}^{D} \), \(R_{i}^{DA,D} \leq 0 \), (since being a payment)
 - Supply side: \(R_{j}^{DA,G} = \lambda_{j}^{G} y_{j}^{G} \), \(R_{j}^{DA,G} \geq 0 \) (since being a revenue)

Payment and revenues for our example market clearing

- Consumption side (payments):
 - \(D_{1} \) pays \(250 \times 200 = 50000 \) €, \(R_{1}^{DA,D} = -50000 \)
 - \(D_{2} \) pays \(300 \times 110 = 33000 \) €, \(R_{2}^{DA,D} = -33000 \), etc.
 - \(D_{9} \) pays \(30 \times 38 = 1140 \) €, \(R_{9}^{DA,D} = -1140 \)

- Supply side (revenues):
 - \(G_{1} \) receives \(120 \times 0 = 0 \) €, \(R_{1}^{DA,G} = 0 \)
 - \(G_{2} \) receives \(50 \times 0 = 0 \) €, \(R_{2}^{DA,G} = 0 \), etc.
 - \(G_{8} \) receives \(55 \times 37.5 = 2062.5 \) €, \(R_{8}^{DA,G} = 2062.5 \)

- Do you foresee the potential consequences of pay-as-bid pricing, e.g., in terms of fixed cost recovery for energy producers and strategic behaviour of market participants?
Settlement with uniform pricing

- How does that work? For those scheduled,
 - Consumption side: $R_{i,D}^{DA} = -\lambda^{S} y_{i}^{D}$, $R_{i,D}^{DA} \leq 0$ (since being a payment)
 - Supply side: $R_{j,G}^{DA} = \lambda^{S} y_{j}^{G}$, $R_{j,G}^{DA} \geq 0$ (since being a revenue)

Payment and revenues for our example market clearing

- Consumption side (payments):
 - D_{1} pays $250 \times 37.5 = 9375 \text{ €}$, $(R_{9,D}^{DA} = -9375)$
 - D_{2} pays $300 \times 37.5 = 11250 \text{ €}$, $(R_{9,D}^{DA} = -11250)$, etc.
 - D_{9} pays $30 \times 37.5 = 1125 \text{ €}$, $(R_{9,D}^{DA} = -1125)$

- Supply side (revenues):
 - G_{1} receives $120 \times 37.5 = 4500 \text{ €}$, $(R_{8,G}^{DA} = 4500)$
 - G_{2} receives $50 \times 37.5 = 1875 \text{ €}$, $(R_{2,G}^{DA} = 1875)$, etc.
 - G_{8} receives $55 \times 37.5 = 2062.5 \text{ €}$, $(R_{8,G}^{DA} = 2062.5)$
Settlement with uniform pricing

- How does that work? For those scheduled,
 - Consumption side: $R_{i}^{DA,D} = -\lambda^S y_i^D$, $R_{i}^{DA,D} \leq 0$, (since being a payment)
 - Supply side: $R_{j}^{DA,G} = \lambda^S y_j^G$, $R_{j}^{DA,G} \geq 0$ (since being a revenue)

Payment and revenues for our example market clearing

- Consumption side (payments):
 - D_1 pays $250 \times 37.5 = 9375$ €, $(R_{9}^{DA,D} = -9375)$
 - D_2 pays $300 \times 37.5 = 11250$ €, $(R_{9}^{DA,D} = -11250)$, etc.
 - D_9 pays $30 \times 37.5 = 1125$ €, $(R_{9}^{DA,D} = -1125)$

- Supply side (revenues):
 - G_1 receives $120 \times 37.5 = 4500$ €, $(R_{8}^{DA,G} = 4500)$
 - G_2 receives $50 \times 37.5 = 1875$ €, $(R_{2}^{DA,G} = 1875)$, etc.
 - G_8 receives $55 \times 37.5 = 2062.5$ €, $(R_{8}^{DA,G} = 2062.5)$

- It is expected to attenuate some of the potential negative consequences observed with pay-as-bid pricing
Properties induced by these two settlement approaches

- Day-ahead markets with the two settlement approaches guarantee **individual rationality**

 In both cases, consumers will pay at most what they were ready to pay, and producers will receive at least what they wanted to be paid for, i.e.,

\[
R_{i}^{DA,D} \leq \lambda_{i}^{D} y_{i}^{D}, \quad \forall i, \quad R_{j}^{DA,G} \geq \lambda_{j}^{G} y_{j}^{G}, \quad \forall j
\]
Properties induced by these two settlement approaches

- Day-ahead markets with the two settlement approaches guarantee **individual rationality**

 In both cases, consumers will pay at most what they were ready to pay, and producers will receive at least what they wanted to be paid for, i.e.,

 \[R_{i}^{DA,D} \leq \lambda_{i}^{D} y_{i}^{D}, \quad \forall i, \quad R_{j}^{DA,G} \geq \lambda_{j}^{G} y_{j}^{G}, \quad \forall j \]

- Day-ahead markets with the two settlement approaches guarantee **revenue adequacy**

 In both cases, the sum of revenues is greater than or equal to the sum of payments, i.e.,

 \[\sum_{j} R_{j}^{DA,G} \geq \sum_{i} R_{i}^{DA,D} \]
Properties induced by these two settlement approaches

- Day-ahead markets with the two settlement approaches guarantee **individual rationality**

 In both cases, consumers will pay at most what they were ready to pay, and producers will receive at least what they wanted to be paid for, i.e.,

 \[R_{i}^{DA,D} \leq \lambda_{i}^{D} y_{i}^{D}, \quad \forall i, \quad R_{j}^{DA,G} \geq \lambda_{j}^{G} y_{j}^{G}, \quad \forall j \]

- Day-ahead markets with the two settlement approaches guarantee **revenue adequacy**

 In both cases, the sum of revenues is greater than or equal to the sum of payments, i.e.,

 \[\sum_{j} R_{j}^{DA,G} \geq \sum_{i} R_{i}^{DA,D} \]

- Uniform pricing yields **budget balance**. Pay-as-bid pricing does not

 Only for uniform pricing, the sum of revenues is by definition equal to the sum of payments
Use the self-assessment quizz to check your understanding!