Module 2 – Electricity Spot Markets (e.g. day-ahead)

2.2 Market clearing as an optimization problem

Pierre Pinson
Technical University of Denmark
Introducing notations first

Inputs:

- All offers in the market are formulated in terms of a *quantity* \(P \) and a *price* \(\lambda \)

- On the *supply* side (\(N_G \) supply offers):
 - set of offers: \(\mathcal{L}_G = \{ G_j, \ j = 1, \ldots, N_G \} \)
 - maximum quantity for offer \(G_j \): \(P_G^j \)
 - price for offer \(G_j \): \(\lambda_G^j \)

- On the *demand* side (\(N_D \) demand offers):
 - set of offers: \(\mathcal{L}_D = \{ D_i, \ i = 1, \ldots, N_D \} \)
 - maximum quantity for offer \(D_i \): \(P_D^i \)
 - price for offer \(D_i \): \(\lambda_D^i \)

Decision variables:

- *Generation* schedule: \(y^G = [y_1^G, \ldots, y_{N_G}^G]^\top, 0 \leq y_j^G \leq P_G^j \)
- *Consumption* schedule: \(y^D = [y_1^D, \ldots, y_{N_D}^D]^\top, 0 \leq y_i^D \leq P_D^i \)
Our example auction setup

Supply: (for a total of 1435 MWh)

<table>
<thead>
<tr>
<th>Company</th>
<th>Supply/Demand</th>
<th>id</th>
<th>P_j^G (MWh)</th>
<th>λ_j^G (€/MWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RT®</td>
<td>Supply</td>
<td>G_1</td>
<td>120</td>
<td>0</td>
</tr>
<tr>
<td>WeTrustInWind</td>
<td>Supply</td>
<td>G_2</td>
<td>50</td>
<td>0</td>
</tr>
<tr>
<td>BlueHydro</td>
<td>Supply</td>
<td>G_3</td>
<td>200</td>
<td>15</td>
</tr>
<tr>
<td>RT®</td>
<td>Supply</td>
<td>G_4</td>
<td>400</td>
<td>30</td>
</tr>
<tr>
<td>KøbenhavnCHP</td>
<td>Supply</td>
<td>G_5</td>
<td>60</td>
<td>32.5</td>
</tr>
<tr>
<td>KøbenhavnCHP</td>
<td>Supply</td>
<td>G_6</td>
<td>50</td>
<td>34</td>
</tr>
<tr>
<td>KøbenhavnCHP</td>
<td>Supply</td>
<td>G_7</td>
<td>60</td>
<td>36</td>
</tr>
<tr>
<td>DirtyPower</td>
<td>Supply</td>
<td>G_8</td>
<td>100</td>
<td>37.5</td>
</tr>
<tr>
<td>DirtyPower</td>
<td>Supply</td>
<td>G_9</td>
<td>70</td>
<td>39</td>
</tr>
<tr>
<td>DirtyPower</td>
<td>Supply</td>
<td>G_{10}</td>
<td>50</td>
<td>40</td>
</tr>
<tr>
<td>RT®</td>
<td>Supply</td>
<td>G_{11}</td>
<td>70</td>
<td>60</td>
</tr>
<tr>
<td>RT®</td>
<td>Supply</td>
<td>G_{12}</td>
<td>45</td>
<td>70</td>
</tr>
<tr>
<td>SafePeak</td>
<td>Supply</td>
<td>G_{13}</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>SafePeak</td>
<td>Supply</td>
<td>G_{14}</td>
<td>60</td>
<td>150</td>
</tr>
<tr>
<td>SafePeak</td>
<td>Supply</td>
<td>G_{15}</td>
<td>50</td>
<td>200</td>
</tr>
</tbody>
</table>
Our example auction setup

Demand: (for a total of 1065 MWh)

<table>
<thead>
<tr>
<th>Company</th>
<th>Supply/Demand</th>
<th>id</th>
<th>P^D_i (MWh)</th>
<th>λ^D_i (€/MWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CleanRetail</td>
<td>Demand</td>
<td>D_1</td>
<td>250</td>
<td>200</td>
</tr>
<tr>
<td>El4You</td>
<td>Demand</td>
<td>D_2</td>
<td>300</td>
<td>110</td>
</tr>
<tr>
<td>EVcharge</td>
<td>Demand</td>
<td>D_3</td>
<td>120</td>
<td>100</td>
</tr>
<tr>
<td>QualiWatt</td>
<td>Demand</td>
<td>D_4</td>
<td>80</td>
<td>90</td>
</tr>
<tr>
<td>IntelliWatt</td>
<td>Demand</td>
<td>D_5</td>
<td>40</td>
<td>85</td>
</tr>
<tr>
<td>El4You</td>
<td>Demand</td>
<td>D_6</td>
<td>70</td>
<td>75</td>
</tr>
<tr>
<td>CleanRetail</td>
<td>Demand</td>
<td>D_7</td>
<td>60</td>
<td>65</td>
</tr>
<tr>
<td>IntelliWatt</td>
<td>Demand</td>
<td>D_8</td>
<td>45</td>
<td>40</td>
</tr>
<tr>
<td>QualiWatt</td>
<td>Demand</td>
<td>D_9</td>
<td>30</td>
<td>38</td>
</tr>
<tr>
<td>IntelliWatt</td>
<td>Demand</td>
<td>D_{10}</td>
<td>35</td>
<td>31</td>
</tr>
<tr>
<td>CleanRetail</td>
<td>Demand</td>
<td>D_{11}</td>
<td>25</td>
<td>24</td>
</tr>
<tr>
<td>El4You</td>
<td>Demand</td>
<td>D_{12}</td>
<td>10</td>
<td>16</td>
</tr>
</tbody>
</table>

That is a lot of offers to match... Could an optimization problem readily give us the solution?
Centralized social welfare optimization

- The *social welfare maximization* problem can be written as

\[
\begin{align*}
\text{max}_{y^G, y^D} & \quad \sum_{i=1}^{N_D} \lambda_i^D y_i^D - \sum_{j=1}^{N_G} \lambda_j^G y_j^G \\
\text{subject to} & \quad \sum_{j=1}^{N_G} y_j^G - \sum_{i=1}^{N_D} y_i^D = 0 \\
& \quad 0 \leq y_i^D \leq P_i^D, \ i = 1, \ldots, N_D \\
& \quad 0 \leq y_j^G \leq P_j^G, \ j = 1, \ldots, N_G
\end{align*}
\] (1a)

- And equivalently as a *minimization problem* by minimizing the opposite objective function, i.e.

\[
\begin{align*}
\text{min}_{y^G, y^D} & \quad \sum_{j=1}^{N_G} \lambda_j^G y_j^G - \sum_{i=1}^{N_D} \lambda_i^D y_i^D \\
\text{subject to} & \quad (1b)-(1d)
\end{align*}
\] (2a)
It is a simple linear program!

- One recognize a so-called **Linear Program** (LP, here in a compact form):

\[
\begin{align*}
\text{min}_{y} & \quad c^\top y \\
\text{subject to} & \quad Ay \leq b \\
& \quad A_{eq}y = b_{eq} \\
& \quad y \geq 0
\end{align*}
\]

- LP problems can be readily solved in
 - **Matlab**, for instance with the function `linprog`,
 - **R**, with the library/function `lp.solve`,
 - and also obviously with **GAMS**, **Gurobi**, etc.

- However, for e.g. **R** and **Matlab**, you need to know how to build relevant vectors and matrices

- And, the solution will only give you the energy schedules in terms of supply and demand
Vector and matrices in the objective function

- The vector y of optimization variables c of weights in the objective function are constructed as

$$y = \begin{bmatrix} y_1^G \\ y_2 \\ \vdots \\ y_{N_G}^G \\ y_1^D \\ y_2^D \\ \vdots \\ y_{N_D}^D \end{bmatrix}, \quad y \in \mathbb{R}^{(N_G+N_D)}$$

$$c = \begin{bmatrix} \lambda_1^G \\ \lambda_2 \\ \vdots \\ \lambda_{N_G}^G \\ -\lambda_1^D \\ -\lambda_2^D \\ \vdots \\ -\lambda_{N_D}^D \end{bmatrix}, \quad c \in \mathbb{R}^{(N_G+N_D)}$$
Vector and matrices defining constraints

- For the equality constraint (balance of generation and consumption):
 \[A_{eq} = [1 \ldots 1 - 1 \ldots -1], \quad A_{eq} \in \mathbb{R}^{(N_G+N_D)}, \quad b_{eq} = 0 \]

- For the inequality constraint (i.e., generation and consumption levels within limits):
 \[A = \begin{bmatrix}
 1 & & & & \\
 & \ddots & & & \\
 & & 1 & & \\
 & & & 0 & \\
 0 & & & & 1
 \end{bmatrix}, \quad b = \begin{bmatrix}
 P^G_1 \\
 P^G_2 \\
 \vdots \\
 P^G_{N_G} \\
 P^D_1 \\
 P^D_2 \\
 \vdots \\
 P^D_{N_D}
 \end{bmatrix}, \quad \text{with } A \in \mathbb{R}^{(N_G+N_D) \times (N_G+N_D)} \text{ and } b \in \mathbb{R}^{(N_G+N_D)}

- Do not forget the non-negativity constraints for the elements of \(y \)...
Getting the complete market-clearing

- By complete market-clearing is meant obtaining
 - the schedule for all supply and demand offers, as well as
 - the price at which the market is cleared, i.e., the so-called market-clearing or system price (in, e.g., Nord Pool)

\[\lambda, \nu \]

\[\lambda = \lambda_S \nu = [\nu_G^1, ..., \nu_G^N]^\top \nu_D^1, ..., \nu_D^N]^\top \]

Getting the complete market-clearing

- By *complete* market-clearing is meant obtaining
 - the *schedule* for all supply and demand offers, as well as
 - the *price* at which the market is cleared, i.e., the so-called *market-clearing* or *system* price (in, e.g., Nord Pool)

- The system price is obtained through the dual of the LP previously defined, i.e.,

\[
\begin{align*}
\max_{\lambda, \nu} & \quad - b^T \nu \\
\text{subject to} & \quad A_{eq}^T \lambda - A^T \nu \leq c \\
& \quad \nu \geq 0
\end{align*}
\]

- This is also an LP: it can be solved with Matlab, R, GAMS, etc.

- \(\lambda \) and \(\nu \) are sets of *Lagrange multipliers* associated to all *equality* and *inequality* constraints:

\[
\lambda = \lambda^S \\
\nu = [\nu_1^G \ldots \nu_{N_g}^G \nu_1^D \ldots \nu_{N_d}^D]^T
\]

More specifically for the market-clearing problem

- Only one equality constraint, i.e.,

\[\sum_{i} y_i^D - \sum_{j} y_j^G = 0 \]

for which the associated Lagrange multiplier \(\lambda^S \) represents the system price.
More specifically for the market-clearing problem

- Only one **equality** constraint, i.e.,
 \[\sum_i y_i^D - \sum_j y_j^G = 0 \]
 for which the associated Lagrange multiplier \(\lambda^S \) represents the system price.

- And \(N_D + N_G \) **inequality** constraints:
 \[0 \leq y_i^D \leq P_i^D, \quad i = 1, \ldots, N_D, \quad 0 \leq y_j^G \leq P_j^G, \quad j = 1, \ldots, N_G \]
 for which the associated Lagrange multipliers \(\nu_i^D \) and \(\nu_j^G \) represents the unitary benefits for the various demand and supply offers if the market is cleared at \(\lambda^S \).
More specifically for the market-clearing problem

- Only one **equality** constraint, i.e.,
 \[\sum_{i} y_{i}^{D} - \sum_{j} y_{j}^{G} = 0 \]
 for which the associated Lagrange multiplier \(\lambda^{S} \) represents the system price.

- And \(N_{D} + N_{G} \) **inequality** constraints:
 \[0 \leq y_{i}^{D} \leq P_{i}^{D}, \quad i = 1, \ldots, N_{D} \]
 \[0 \leq y_{j}^{G} \leq P_{j}^{G}, \quad j = 1, \ldots, N_{G} \]
 for which the associated Lagrange multipliers \(\nu_{i}^{D} \) and \(\nu_{j}^{G} \) represents the unitary benefits for the various demand and supply offers if the market is cleared at \(\lambda^{S} \).

- The dual of the market clearing LP is also an LP which writes
 \[
 \max_{\lambda^{S}, \{\nu_{i}^{D}\}, \{\nu_{j}^{G}\}} \quad \sum_{j} \nu_{j}^{G} P_{j}^{G} - \sum_{i} \nu_{i}^{D} P_{i}^{D}
 \]
 subject to
 \[
 \lambda^{S} - \nu_{j}^{G} \leq \lambda_{j}^{G}, \quad j = 1, \ldots, N_{G} \\
 - \lambda^{S} - \nu_{i}^{D} \leq -\lambda_{i}^{D}, \quad i = 1, \ldots, N_{D} \\
 \nu_{j}^{G} \geq 0, \quad j = 1, \ldots, N_{G}, \quad \nu_{i}^{D} \geq 0, \quad i = 1, \ldots, N_{D}
 \]

[To retrieve the dual LP, follow: Lahaie S (2008). How to take the dual of a Linear Program. (link)]
Let’s also write it as a compact linear program!

As for the **primal LP** allowing to obtain the dispatch for market participants on both supply and demand side, we write here the **dual LP** in a compact form:

\[
\begin{align*}
\text{max} & \quad \tilde{c}^\top \tilde{y} \\
\text{subject to} & \quad \tilde{A} \tilde{y} \leq \tilde{b} \\
& \quad \tilde{y} \geq 0
\end{align*}
\]

The next 2 slides describe how to build the assemble the relevant vectors and matrices in the above LP...

Then, it can be solved with **Matlab**, **R**, **GAMS**, etc.

And, the solution will give you the equilibrium price, as well as the unit benefits for each and every market participant.

[**NB**: Most optimization functions and tools readily give you the solution of dual problems when solving the primal ones! E.g., see documentation of \texttt{linprog} in Matlab]
Vector and matrices in the objective function

- The vector \mathbf{y} of optimization variables \mathbf{c} of weights in the objective function are constructed as

$$\tilde{\mathbf{y}} = \begin{bmatrix}
\nu_1^G \\
\nu_2^G \\
\vdots \\
\nu_{N_G}^G \\
\nu_1^D \\
\nu_2^D \\
\vdots \\
\nu_{N_D}^D \\
\lambda_S
\end{bmatrix}, \quad \tilde{\mathbf{y}} \in \mathbb{R}^{(N_G+N_D+1)}$$

$$\tilde{\mathbf{c}} = \begin{bmatrix}
-P_1^G \\
-P_2^G \\
\vdots \\
-P_{N_G}^G \\
-P_1^D \\
-P_2^D \\
\vdots \\
-P_{N_D}^D \\
0
\end{bmatrix}, \quad \tilde{\mathbf{c}} \in \mathbb{R}^{(N_G+N_D+1)}$$
Vector and matrices defining constraints

- No equality constraint!

- For the inequality constraint:

\[
\tilde{A} = \begin{bmatrix}
-1 & \cdots & -1 \\
\vdots & \ddots & \vdots \\
0 & \cdots & -1 \\
\end{bmatrix},
\tilde{b} = \begin{bmatrix}
\lambda^G_1 \\
\lambda^G_2 \\
\vdots \\
-\lambda^D_1 \\
-\lambda^D_2 \\
\vdots \\
-\lambda^D_{N_D}
\end{bmatrix},
\]

with \(\tilde{A} \in \mathbb{R}^{(N_G+N_D) \times (N_G+N_D)} \) and \(\tilde{b} \in \mathbb{R}^{N_G+N_D} \)
Application to our simple auction example

- Solving the **primal LP** for obtaining the supply and demand schedules yields:

<table>
<thead>
<tr>
<th>Supply id.</th>
<th>Schedule (MWh)</th>
<th>Demand id.</th>
<th>Schedule (MWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G₁</td>
<td>120</td>
<td>D₁</td>
<td>250</td>
</tr>
<tr>
<td>G₂</td>
<td>50</td>
<td>D₂</td>
<td>300</td>
</tr>
<tr>
<td>G₃</td>
<td>200</td>
<td>D₃</td>
<td>120</td>
</tr>
<tr>
<td>G₄</td>
<td>400</td>
<td>D₄</td>
<td>80</td>
</tr>
<tr>
<td>G₅</td>
<td>60</td>
<td>D₅</td>
<td>40</td>
</tr>
<tr>
<td>G₆</td>
<td>50</td>
<td>D₆</td>
<td>70</td>
</tr>
<tr>
<td>G₇</td>
<td>60</td>
<td>D₇</td>
<td>60</td>
</tr>
<tr>
<td>G₈</td>
<td>55</td>
<td>D₈</td>
<td>45</td>
</tr>
<tr>
<td>G₉-G₁₅</td>
<td>0</td>
<td>D₉</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D₁₀-D₁₂</td>
<td>0</td>
</tr>
</tbody>
</table>

for a total amount of energy scheduled of 995 MWh

- Solving the **dual LP** gives a system price of 37.5 €/MWh which corresponds to the price offer of $G₈$
Use the self-assessment quizz to check your understanding!