Module 10 - Renewable Energy Forecasting: Advanced Topics

10.3 Data-driven decisions

Pierre Pinson
Technical University of Denmark

[credits: Mediehuset Ingenieren]
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What decisions are we talking about?

@ The more advanced the modelling approach, the more likely you need to decide on so-called

meta-parameters, e.g.

order of polynomial regression

fitting points and bandwidths for local polynomial regression
window size when learning over sliding windows

forgetting factor (/learning rate) in online learning

etc.
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What decisions are we talking about?

@ The more advanced the modelling approach, the more likely you need to decide on so-called
meta-parameters, e.g.

e order of polynomial regression

e fitting points and bandwidths for local polynomial regression
e window size when learning over sliding windows

o forgetting factor (/learning rate) in online learning

e etc.

@ And you may also want to see whether a different model, or the use of other explanatory
variables, would yield higher forecast quality
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What decisions are we talking about?

@ The more advanced the modelling approach, the more likely you need to decide on so-called
meta-parameters, e.g.

e order of polynomial regression

e fitting points and bandwidths for local polynomial regression
e window size when learning over sliding windows

o forgetting factor (/learning rate) in online learning

e etc.

@ And you may also want to see whether a different model, or the use of other explanatory
variables, would yield higher forecast quality

@ What could be a well-thought strategy to make those decisions?
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Playing with available data
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@ We need to find smart ways to use those data to make decisions...
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We can organize our own forecast competition
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@ A part of the dataset is used for any training, given choices about models, meta-parameters, etc.

@ The remainder is used for genuine forecast evaluation a/8
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k-fold cross validation

@ The process of using part of the data for training and the remainder for validation is referred to as
cross-validation

@ For the case of k-fold cross validation:

o Choose a reference score Sc e.g. RMSE

Divide the dataset into k parts of (app.) equal length

e For a given choice of model M and meta-parameters T,

@ There are k possible validation sets to be considered, i =1,...,k
o For a given i, train over k — 1 parts of data...

@ And calculate the score for the last remaining part of data Sc;(M, 1)

Calculate the average score Sc(M, 7) for these k validation data blocks, i.e.

K
Sc(M,T) = %ZSC,’(M,T)
i=1

@ k =10 is the most common choice
5/8
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Example: 10-fold cross-validation
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@ Use the first 9 blocks of data to train, and the last one to perform genuine forecasting and
calculate RMSE score - Obtain Sci0(M, 7)
@ Repeat for all other possible combinations... 6/8
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Example: 10-fold cross-validation
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@ E.g. when reaching i = 4, use the first 3 and last 6 blocks of data to train, and the 4% one to
perform genuine forecasting and calculate RMSE score - Obtain SC4(M£)
@ When finished with all i = 1,..., 10, calculate the average score value Sc(M, 7) 7/8



Use the self-assessment quizz to
check your understanding!
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