


Why could there be nonstationarity?

Nonstationarity broadly means that the characteristics of the underlying processes we consider
may vary with time

Examples:

Seasons
Dirty blades

2/10



Let’s look at an example

We collect 1000 (xt , yt) pairs (say, over a period of 1000 hours, t = 1, . . . , 1000)

● ●

●

●

●●

●

●

●●

●

● ●●

●

●●

●

●

●
●

●
●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●
●

●

●

●
●

●

●

●

●
● ●●

●

●

●
● ●

●

●

●

●
●●

●

●

● ●
●

●

●

●

●
● ●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

● ●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●●

●

●

●

●

● ●

●

●●

●

●

●

●
● ●

●

●

●

●

●
●

●

●●
●

●
●

●

●●
●●

●

●

●●

●

●

●

●
●

●

●
●

●

●●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

● ●

● ●
●

●

●

●
●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●
●●

●

●

●

●

● ●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

● ●

●

●

●

●
●

● ●

●
●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●
●

●

●

● ●

●

● ●

●

●

●

●

●

● ●

●
●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●● ●
●

●

●
●

●

●

●

●

● ●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●
●

● ● ●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

● ●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

● ●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

0 1 2 3 4 5

0
1

2
3

4

x

y

It is just very noisy, right?

3/10



Digging into the data

If we were to plot the data collected over the first 200 hours, and over the last 200 hours...

● ●

●

●

●●

●

●

●●

●

● ●●

●

●●

●

●

●
●

●
●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●
●

●

●

●
●

●

●

●

●
● ●●

●

●

●
● ●

●

●

●

●
●●

●

●

● ●
●

●

●

●

●
● ●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

● ●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●●

●

●

●

●

● ●

●

●●

●

●

●

●
● ●

●

●

●

●

●
●

●

●

0 1 2 3 4 5

0
1

2
3

4

x

y ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

● ●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

0 1 2 3 4 5

0
1

2
3

4

x

y

So.. maybe it is not just noise

4/10



Estimation on sliding windows

Instead of estimating model parameters once for all, one may estimate them on sliding windows

Given a window size n, The Least-Squares (LS) estimate β̂t at time t is given by

β̂t = argminβ
∑t

i=t−n

(
yi − β>xi

)2
= (X>t Xt)

−1X>t yt

with

β̂t =


β̂0,t
β̂1,t
· · ·
β̂P,t

 , Xt =


1 xt−n x2t−n . . . xPt−n
1 xt−n+1 x2t−n+1 . . . xPt−n+1
...

...
...

...
1 xt x2t . . . xPt

 , yt =


yt−n
yt−n+1

...
yt



5/10



Application and results

Polynomial regression of order 2 (quadratic should be enough)

Window size of n = 100

Parameters are then estimated from t = 101 to t = 1000

0 200 400 600 800 1000

−
0.

5
0.

0
0.

5
1.

0
1.

5

t

β

0 200 400 600 800 1000

−
0.

5
0.

0
0.

5
1.

0
1.

5

0 200 400 600 800 1000

−
0.

5
0.

0
0.

5
1.

0
1.

5

0 200 400 600 800 1000

−
0.

5
0.

0
0.

5
1.

0
1.

5

0 200 400 600 800 1000

−
0.

5
0.

0
0.

5
1.

0
1.

5

0 200 400 600 800 1000

−
0.

5
0.

0
0.

5
1.

0
1.

5

β0
β1
β2

● ●

●

●

●●

●

●

●●

●

● ●●

●

●●

●

●

●
●

●
●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●
●

●

●

●
●

●

●

●

●
● ●●

●

●

●
● ●

●

●

●

●
●●

●

●

● ●
●

●

●

●

●
● ●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

● ●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●●

●

●

●

●

● ●

●

●●

●

●

●

●
● ●

●

●

●

●

●
●

●

●●
●

●
●

●

●●
●●

●

●

●●

●

●

●

●
●

●

●
●

●

●●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

● ●

● ●
●

●

●

●
●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●
●●

●

●

●

●

● ●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

● ●

●

●

●

●
●

● ●

●
●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●
●

●

●

● ●

●

● ●

●

●

●

●

●

● ●

●
●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●● ●
●

●

●
●

●

●

●

●

● ●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●
●

● ● ●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

● ●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

● ●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

0 1 2 3 4 5

0
1

2
3

4

x

y

0 1 2 3 4 5

0
1

2
3

4

0 1 2 3 4 5

0
1

2
3

4

0 1 2 3 4 5

0
1

2
3

4

t=101
t=500
t=1000

It works nicely but it may be a bit heavy to recalculate model parameters every time steps with
such overlapping windows(!)

Optimally, one would want to lighten the computation burden as much as possible, while limiting
the amount of data to store

6/10



Online learning

The fundamental principle of online learning relies on recursivity

At a given time t − 1:

A set of model parameters β̂t−1 was estimated

All data {(xi , yi )}i≤t−1 is considered as already “used”, and hence dumped

It may be that some information Ωt−1 (of very limited size) is kept in memory

Then, at time t:

Only data at time t, i.e., (xt , yt) is recorded and used as input

The model parameters are updated with

β̂t = β̂t−1 + F((xt , yt),Ωt−1, τ)

Optimally, F only involves simple operations e.g. matrix multiplications. τ includes useful parameters,
e.g. memory

Obviously, one needs an initialization for β̂0

7/10



Online learning with Recursive Least Squares (RLS)

Choose a forgetting factor ν, ν < 1 (e.g., ν = 0.99)

Consider that the Least Squares estimation problem to be solved down-weight past observations,
i.e.,

β̂t = argminβ
∑

i<t ν
t−i
(
yi − β>xi

)2
and we skip the necessary algebra to obtain the recursion for the RLS estimator with forgetting:

Given a forgetting factor ν, The Recursive Least-Squares (LS) estimate β̂t at time t is given by

Rt = νRt−1 + xtx>t
β̂t = β̂t−1 + R−1t xt(yt − β̂

>
t−1xt)

where

xt =


1
xt−n
x2t−n
· · ·
xPt−n


8/10



Application and results

Polynomial regression of order 2 (quadratic should be enough)

Forgetting factor ν = 0.99

Initialization: β̂0 = 0

0 200 400 600 800 1000

−
0.

5
0.

0
0.

5
1.

0
1.

5

x

y

0 200 400 600 800 1000

−
0.

5
0.

0
0.

5
1.

0
1.

5

0 200 400 600 800 1000

−
0.

5
0.

0
0.

5
1.

0
1.

5

0 200 400 600 800 1000

−
0.

5
0.

0
0.

5
1.

0
1.

5

0 200 400 600 800 1000

−
0.

5
0.

0
0.

5
1.

0
1.

5

0 200 400 600 800 1000

−
0.

5
0.

0
0.

5
1.

0
1.

5

β0
β1
β2

● ●

●

●

●●

●

●

●●

●

● ●●

●

●●

●

●

●
●

●
●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●
●

●

●

●
●

●

●

●

●
● ●●

●

●

●
● ●

●

●

●

●
●●

●

●

● ●
●

●

●

●

●
● ●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

● ●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●●

●

●

●

●

● ●

●

●●

●

●

●

●
● ●

●

●

●

●

●
●

●

●●
●

●
●

●

●●
●●

●

●

●●

●

●

●

●
●

●

●
●

●

●●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

● ●

● ●
●

●

●

●
●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●
●●

●

●

●

●

● ●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

● ●

●

●

●

●
●

● ●

●
●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●
●

●

●

● ●

●

● ●

●

●

●

●

●

● ●

●
●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●● ●
●

●

●
●

●

●

●

●

● ●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●
●

● ● ●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

● ●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

● ●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

0 1 2 3 4 5

0
1

2
3

4

x

y

0 1 2 3 4 5

0
1

2
3

4

0 1 2 3 4 5

0
1

2
3

4

0 1 2 3 4 5

0
1

2
3

4

t=101
t=500
t=1000

It works as well as the sliding windows, while being (potentially) much faster and avoiding re-using
a lot of data

How does one decide on the forgetting factor ν to use?

9/10




