Module 10 - Renewable Energy Forecasting: Advanced Topics

10.2 Nonstationarity and time-adaptivity

Why could there be nonstationarity?

- Nonstationarity broadly means that the characteristics of the underlying processes we consider may vary with time
- Examples:

Seasons

Let's look at an example

- We collect $1000\left(x_{t}, y_{t}\right)$ pairs (say, over a period of 1000 hours, $t=1, \ldots, 1000$)

- It is just very noisy, right?

Digging into the data

- If we were to plot the data collected over the first 200 hours, and over the last 200 hours...

- So.. maybe it is not just noise

Estimation on sliding windows

- Instead of estimating model parameters once for all, one may estimate them on sliding windows

Given a window size n, The Least-Squares (LS) estimate $\hat{\boldsymbol{\beta}}_{t}$ at time t is given by

$$
\hat{\boldsymbol{\beta}}_{t}=\arg \min _{\boldsymbol{\beta}} \sum_{i=t-n}^{t}\left(y_{i}-\boldsymbol{\beta}^{\top} \mathbf{x}_{i}\right)^{2}=\left(\mathbf{X}_{t}^{\top} \mathbf{X}_{t}\right)^{-1} \mathbf{X}_{t}^{\top} \mathbf{y}_{t}
$$

with

$$
\hat{\boldsymbol{\beta}}_{t}=\left[\begin{array}{l}
\hat{\beta}_{0, t} \\
\hat{\beta}_{1, t} \\
\cdots \\
\hat{\beta}_{P, t}
\end{array}\right], \quad \mathbf{X}_{t}=\left[\begin{array}{lllll}
1 & x_{t-n} & x_{t-n}^{2} & \cdots & x_{t-n}^{P} \\
1 & x_{t-n+1} & x_{t-n+1}^{2} & \cdots & x_{t-n+1}^{P} \\
\vdots & \vdots & \vdots & & \vdots \\
1 & x_{t} & x_{t}^{2} & \cdots & x_{t}^{P}
\end{array}\right], \quad \mathbf{y}_{t}=\left[\begin{array}{c}
y_{t-n} \\
y_{t-n+1} \\
\vdots \\
y_{t}
\end{array}\right]
$$

Application and results

- Polynomial regression of order 2 (quadratic should be enough)
- Window size of $n=100$
- Parameters are then estimated from $t=101$ to $t=1000$

- It works nicely but it may be a bit heavy to recalculate model parameters every time steps with such overlapping windows(!)
- Optimally, one would want to lighten the computation burden as much as possible, while limiting the amount of data to store

Online learning

- The fundamental principle of online learning relies on recursivity
- At a given time $t-1$:
- A set of model parameters $\hat{\boldsymbol{\beta}}_{t-1}$ was estimated
- All data $\left\{\left(x_{i}, y_{i}\right)\right\}_{i \leq t-1}$ is considered as already "used", and hence dumped
- It may be that some information Ω_{t-1} (of very limited size) is kept in memory
- Then, at time t :
- Only data at time t, i.e., $\left(x_{t}, y_{t}\right)$ is recorded and used as input
- The model parameters are updated with

$$
\hat{\boldsymbol{\beta}}_{t}=\hat{\boldsymbol{\beta}}_{t-1}+\mathcal{F}\left(\left(x_{t}, y_{t}\right), \Omega_{t-1}, \tau\right)
$$

Optimally, \mathcal{F} only involves simple operations e.g. matrix multiplications. τ includes useful parameters, e.g. memory

- Obviously, one needs an initialization for $\hat{\boldsymbol{\beta}}_{0}$

Online learning with Recursive Least Squares (RLS)

- Choose a forgetting factor $\nu, \nu<1$ (e.g., $\nu=0.99$)
- Consider that the Least Squares estimation problem to be solved down-weight past observations, i.e.,

$$
\hat{\boldsymbol{\beta}}_{t}=\arg \min _{\boldsymbol{\beta}} \sum_{i<t} \nu^{t-i}\left(y_{i}-\boldsymbol{\beta}^{\top} \mathbf{x}_{i}\right)^{2}
$$

- and we skip the necessary algebra to obtain the recursion for the RLS estimator with forgetting:

Given a forgetting factor ν, The Recursive Least-Squares (LS) estimate $\hat{\boldsymbol{\beta}}_{t}$ at time t is given by

$$
\begin{aligned}
& R_{t}=\nu R_{t-1}+\mathbf{x}_{t} \mathbf{x}_{t}^{\top} \\
& \hat{\boldsymbol{\beta}}_{t}=\hat{\boldsymbol{\beta}}_{t-1}+R_{t}^{-1} \mathbf{x}_{t}\left(y_{t}-\hat{\boldsymbol{\beta}}_{t-1}^{\top} \mathbf{x}_{t}\right)
\end{aligned}
$$

where

$$
\mathbf{x}_{t}=\left[\begin{array}{l}
1 \\
x_{t-n} \\
x_{t-n}^{2} \\
\cdots \\
x_{t-n}^{P}
\end{array}\right]
$$

Application and results

- Polynomial regression of order 2 (quadratic should be enough)
- Forgetting factor $\nu=0.99$
- Initialization: $\widehat{\boldsymbol{\beta}}_{0}=\mathbf{0}$

- It works as well as the sliding windows, while being (potentially) much faster and avoiding re-using a lot of data
- How does one decide on the forgetting factor ν to use?

Use the self-assessment quizz to check your understanding!

