Module 10 - Renewable Energy Forecasting: Advanced Topics

10.2 Nonstationarity and time-adaptivity
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Why could there be nonstationarity? n

>

o Nonstationarity broadly means that the characteristics of the underlying processes we consider
may vary with time

@ Examples:

A

Dirty blades

Seasons
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Let's look at an example

i

e We collect 1000 (x;, y;) pairs (say, over a period of 1000 hours, t =1, ...,1000)

@ It is just very noisy, right?
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Digging into the data

i

o If we were to plot the data collected over the first 200 hours, and over the last 200 hours...
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@ So.. maybe it is not just noise
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Estimation on sliding windows

@ Instead of estimating model parameters once for all, one may estimate them on sliding windows

Given a window size n, The Least-Squares (LS) estimate 3, at time t is given by

N 2
Be=argming Y0, (i —B7x) = (X[ X)X/ ys

with
N 2 P
Bo e 1 xi_p X;i_, cee Xi_p Yt—n
5 2 P
~ Bt I Xt—nt1 Xipp1 oo+ Xe—nt1 Yt—n41
ﬁt = . .7. ’ Xt = : . . . , Yi = .
Bp,t 1 x th e XtP Vi

5/10



S
—
=

Application and results sz
@ Polynomial regression of order 2 (quadratic should be enough)
@ Window size of n = 100
@ Parameters are then estimated from t = 101 to t = 1000
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@ It works nicely but it may be a bit heavy to recalculate model parameters every time steps with
such overlapping windows(!)
e Optimally, one would want to lighten the computation burden as much as possible, while limiting

the amount of data to store
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Online learning

i

@ The fundamental principle of online learning relies on recursivity

o At a given time t — 1:
o A set of model parameters 3t_1 was estimated
o All data {(xi, yi)}i<¢—1 is considered as already “used”, and hence dumped

e It may be that some information Q;_1 (of very limited size) is kept in memory

@ Then, at time t:

o Only data at time t, i.e., (xt, y:) is recorded and used as input

o The model parameters are updated with

,Bt = lét—l + ‘F((Xtv.yf)a Qt—laT)

Optimally, F only involves simple operations e.g. matrix multiplications. 7 includes useful parameters,
e.g. memory

@ Obviously, one needs an initialization for ,@0
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Online learning with Recursive Least Squares (RLS)

i

@ Choose a forgetting factor v, v < 1 (e.g., v = 0.99)

o Consider that the Least Squares estimation problem to be solved down-weight past observations,

i.e.,
. . ) 2
B, = argming DotV (y,- - ﬁTX,')

@ and we skip the necessary algebra to obtain the recursion for the RLS estimator with forgetting:

Given a forgetting factor v, The Recursive Least-Squares (LS) estimate ﬁt at time ¢ is given by
Rt = VRt—l + thtT -
B =Bi1 + R xe(ye — By_1xt)

where
1
Xt—n
— 2
Xy = Xt—n
P
Xt—n
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Application and results

i

@ Polynomial regression of order 2 (quadratic should be enough)
o Forgetting factor v = 0.99

e Initialization: 3, =0
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@ It works as well as the sliding windows, while being (potentially) much faster and avoiding re-using
a lot of data
@ How does one decide on the forgetting factor v to use?
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Use the self-assessment quizz to
check your understanding!
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