Module 10 – Renewable Energy Forecasting: Advanced Topics

10.1 From linear to nonlinear regression

A motivation for polynomial regression

- We have obtained input-output pairs $\{(x_t, y_t)\}_t$ over the last 200 time steps and aim to model their relationship

• Using linear regression does not look like such a good idea...

• A simple linear relation is assumed between x and y, i.e.,

$$y_t = \beta_0 + \beta_1 x_t + \varepsilon_t, \quad t = t_n - n, \dots, t_n$$

where

- β_0 and β_1 are the model parameters (called *intercept* and *slope*)
- ε_t is a noise term, which you may see as our forecast error we want to minimize

The linear regression model can be reformulated in a more compact form as

$$y_t = \boldsymbol{\beta}^{\top} \mathbf{x}_t + \varepsilon_t, \quad t = t_n - n, \dots, t_n$$

with

$$\boldsymbol{\beta} = \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix}, \qquad \mathbf{x}_t = \begin{bmatrix} 1 \\ x_t \end{bmatrix}$$

- $\bullet\,$ Now we need to find the best value of β that describes this cloud of point
- Under a number of assumptions, which we overlook here, the (best) model parameters $\hat{\beta}$ can be readily obtained with Least-Squares (LS) estimation

The Least-Squares (LS) estimate \hat{eta} of the linear regression model parameters is given by

$$\hat{\boldsymbol{\beta}} = \arg\min_{\boldsymbol{\beta}} \sum_{t} \varepsilon_{i}^{2} = \arg\min_{\boldsymbol{\beta}} \sum_{t} \left(y_{t} - \boldsymbol{\beta}^{\top} \mathbf{x}_{t} \right)^{2} = (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top} \mathbf{y}$$

with

$$\hat{\boldsymbol{\beta}} = \begin{bmatrix} \hat{\beta}_0 \\ \hat{\beta}_1 \end{bmatrix}, \qquad \mathbf{X} = \begin{bmatrix} 1 & x_{t_n - n} \\ 1 & x_{t_n - n + 1} \\ \vdots & \vdots \\ 1 & x_{t_n} \end{bmatrix}, \qquad \mathbf{y} = \begin{bmatrix} y_{t_n - n} \\ y_{t_n - n + 1} \\ \vdots \\ y_{t_n} \end{bmatrix}$$

Extending to polynomial regression

• We could also assume more generally a polynomial relation between x and y, i.e.,

$$y_t = \beta_0 + \sum_{p=1}^{P} \beta_p x_t^p + \varepsilon_t, \quad t = t_n - n, \dots, t_n$$

where

- β_p , $p = 0, \dots, P$ are the model parameters
- ε_t is a noise term, which you may see as our forecast error we want to minimize

This polynomial regression can be reformulated in a more compact form as

$$y_t = \boldsymbol{\beta}^{\top} \mathbf{x}_t + \varepsilon_t, \quad i = t_n - n, \dots, t_n$$

with

$$\boldsymbol{\beta} = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \cdots \\ \beta_P \end{bmatrix}, \qquad \mathbf{x}_t = \begin{bmatrix} 1 \\ x_t \\ \cdots \\ x_t^P \end{bmatrix}$$

• As the model is linear we can still use LS estimation!

The Least-Squares (LS) estimate
$$\hat{\boldsymbol{\beta}}$$
 of the linear regression model parameters is given by
 $\hat{\boldsymbol{\beta}} = \arg \min_{\boldsymbol{\beta}} \sum_{t} \varepsilon_{t}^{2} = \arg \min_{\boldsymbol{\beta}} \sum_{t} \left(y_{t} - \boldsymbol{\beta}^{\top} \mathbf{x}_{t} \right)^{2} = (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top} \mathbf{y}$
with
 $\hat{\boldsymbol{\beta}} = \begin{bmatrix} \hat{\beta}_{0} \\ \hat{\beta}_{1} \\ \cdots \\ \hat{\beta}_{P} \end{bmatrix}, \quad \mathbf{X} = \begin{bmatrix} 1 & x_{t_{n}-n} & x_{t_{n}-n}^{2} & \cdots & x_{t_{n}-n+1}^{P} \\ 1 & x_{t_{n}-n+1} & x_{t_{n}-n+1}^{2} & \cdots & x_{t_{n}-n+1}^{P} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_{t_{n}} & x_{t_{n}}^{2} & \cdots & x_{t_{n}}^{P} \end{bmatrix}, \quad \mathbf{y} = \begin{bmatrix} y_{t_{n}-n} \\ y_{t_{n}-n+1} \\ \vdots \\ y_{t_{n}} \end{bmatrix}$

Going back to our example

• We apply polynominal regression with P = 2 (quadratic) and P = 3 (cubic)

• They both look quite nicer than the simple linear fit

- We are lucky here that the relationship truly is quadratic... if fitting higher-order polynominals, $\hat{\beta}_i=0,\ p>2$
- In general, higher-order may yield spurious results(!)

With a more general nonlinear regression case

- DTU
- Let's model something that looks more like a power curve, and try a cubic fit (polynomial regression with P = 3)

- Indeed we need to find something better than simply fitting polynomials that way
- Ideas?

Local polynomial regression

• Use polynomial regression, though locally fitting those models

- Consider a number of *m* of fitting points, e.g., 0, 0.1, ..., 1
- Use some weighting function ω to give more or less importance to the various data points

• After fitting those models, we can reconstruct the full nonlinear regression curve by connecting the values obtained at the fitting points

Local polynomial regression

- Let us concentrate on a given fitting point x_u , e.g. $x_u = 0.6$
- If aiming to fit a model that represents what happens in the neighborhood of x_u, more importance is to be given to data points close to x_u

(Example Gaussian kernel with $x_u = 0.6$ and $\sigma = 0.05$)

 For all data points {(x_t, y_t)}_t, the corresponding weight w_t can be defined as

$$w_t = \omega(x_t - x_u, \kappa)$$

 $\bullet\,$ For instance with ω a Gaussian kernel,

$$\omega(x_t - x_u, \sigma) = \exp\left(-\frac{(x_t - x_u)^2}{2\sigma^2}\right)$$

10/14

Weighted Least Squares (WLS) estimation

- DTU
- The previously introduced LS estimators can be generalized to account for weights given to data points
- The Weighted Least-Squares (WLS) estimate $\hat{\beta}$ of the polynomial regression model parameters fitted at x_u is given by

$$\hat{\boldsymbol{\beta}} = \arg\min_{\boldsymbol{\beta}} \sum_{t} w_{t} \varepsilon_{t}^{2} = \arg\min_{\boldsymbol{\beta}} \sum_{t} w_{t} \left(y_{t} - \boldsymbol{\beta}^{\top} \mathbf{x}_{t} \right)^{2} = (\mathbf{X}^{\top} \mathbf{W} \mathbf{X})^{-1} \mathbf{X}^{\top} \mathbf{W} \mathbf{y}$$
with
$$\hat{\boldsymbol{\beta}} = \begin{bmatrix} \hat{\beta}_{0} \\ \hat{\beta}_{1} \\ \cdots \\ \hat{\beta}_{P} \end{bmatrix}, \quad \mathbf{X} = \begin{bmatrix} 1 & x_{t_{n}-n} & x_{t_{n}-n+1}^{2} & \cdots & x_{t_{n}-n+1}^{P} \\ 1 & x_{t_{n}-n+1} & x_{t_{n}-n+1}^{2} & \cdots & x_{t_{n}}^{P} \end{bmatrix}, \quad \mathbf{y} = \begin{bmatrix} y_{t_{n}-n} \\ y_{t_{n}-n+1} \\ \vdots \\ y_{t_{n}} \end{bmatrix}$$
and
$$\mathbf{W} = \begin{bmatrix} w_{t_{n}-n} & 0 \\ w_{t_{n}-n+1} \\ \vdots \\ 0 & w_{t_{n}} \end{bmatrix}$$

Applying the idea to a few fitting points

• First for that we focused on, i.e., $x_u = 0.6$, say with a polynomial of degree 1

Applying the idea to a few fitting points

• First for that we focused on, i.e., $x_u = 0.6$, say with a polynomial of degree 1

• And then for another fitting point, $x_u = 0.2$, say with a polynomial of degree 2

The resulting power curve model

- We first fix a polynomial order, choice of kernel and its parameters, and number of fitting points,
- We then apply local polynomial regression at all fitting points and record the value at those points, and eventually connect all those points, e.g., with linear interpolation

Use the self-assessment quizz to check your understanding!

