Module 10 - Renewable Energy Forecasting: Advanced Topics

10.1 From linear to nonlinear regression

A motivation for polynomial regression

- We have obtained input-output pairs $\left\{\left(x_{t}, y_{t}\right)\right\}_{t}$ over the last 200 time steps and aim to model their relationship

- Using linear regression does not look like such a good idea...

Linear regression

- A simple linear relation is assumed between x and y, i.e.,

$$
y_{t}=\beta_{0}+\beta_{1} x_{t}+\varepsilon_{t}, \quad t=t_{n}-n, \ldots, t_{n}
$$

where

- β_{0} and β_{1} are the model parameters (called intercept and slope)
- ε_{t} is a noise term, which you may see as our forecast error we want to minimize

The linear regression model can be reformulated in a more compact form as

$$
y_{t}=\boldsymbol{\beta}^{\top} \mathbf{x}_{t}+\varepsilon_{t}, \quad t=t_{n}-n, \ldots, t_{n}
$$

with

$$
\boldsymbol{\beta}=\left[\begin{array}{l}
\beta_{0} \\
\beta_{1}
\end{array}\right], \quad \mathbf{x}_{t}=\left[\begin{array}{c}
1 \\
x_{t}
\end{array}\right]
$$

Least Squares (LS) estimation

- Now we need to find the best value of $\boldsymbol{\beta}$ that describes this cloud of point
- Under a number of assumptions, which we overlook here, the (best) model parameters $\hat{\boldsymbol{\beta}}$ can be readily obtained with Least-Squares (LS) estimation

The Least-Squares (LS) estimate $\hat{\boldsymbol{\beta}}$ of the linear regression model parameters is given by

$$
\hat{\boldsymbol{\beta}}=\arg \min _{\boldsymbol{\beta}} \sum_{t} \varepsilon_{i}^{2}=\arg \min _{\boldsymbol{\beta}} \sum_{t}\left(y_{t}-\boldsymbol{\beta}^{\top} \mathbf{x}_{t}\right)^{2}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{y}
$$

with

$$
\hat{\boldsymbol{\beta}}=\left[\begin{array}{l}
\hat{\beta}_{0} \\
\hat{\beta}_{1}
\end{array}\right], \quad \mathbf{X}=\left[\begin{array}{ll}
1 & x_{t_{n}-n} \\
1 & x_{t_{n}-n+1} \\
\vdots & \vdots \\
1 & x_{t_{n}}
\end{array}\right], \quad \mathbf{y}=\left[\begin{array}{c}
y_{t_{n}-n} \\
y_{t_{n}-n+1} \\
\vdots \\
y_{t_{n}}
\end{array}\right]
$$

Extending to polynomial regression

- We could also assume more generally a polynomial relation between x and y, i.e.,

$$
y_{t}=\beta_{0}+\sum_{p=1}^{P} \beta_{p} x_{t}^{p}+\varepsilon_{t}, \quad t=t_{n}-n, \ldots, t_{n}
$$

where

- $\beta_{p}, p=0, \ldots, P$ are the model parameters
- ε_{t} is a noise term, which you may see as our forecast error we want to minimize

This polynomial regression can be reformulated in a more compact form as

$$
y_{t}=\boldsymbol{\beta}^{\top} \mathbf{x}_{t}+\varepsilon_{t}, \quad i=t_{n}-n, \ldots, t_{n}
$$

with

$$
\boldsymbol{\beta}=\left[\begin{array}{c}
\beta_{0} \\
\beta_{1} \\
\cdots \\
\beta_{P}
\end{array}\right], \quad \mathbf{x}_{t}=\left[\begin{array}{c}
1 \\
x_{t} \\
\cdots \\
x_{t}^{P}
\end{array}\right]
$$

Least Squares (LS) estimation

- As the model is linear we can still use LS estimation!

The Least-Squares (LS) estimate $\hat{\boldsymbol{\beta}}$ of the linear regression model parameters is given by

$$
\hat{\boldsymbol{\beta}}=\arg \min _{\boldsymbol{\beta}} \sum_{t} \varepsilon_{t}^{2}=\arg \min _{\boldsymbol{\beta}} \sum_{t}\left(y_{t}-\boldsymbol{\beta}^{\top} \mathbf{x}_{t}\right)^{2}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{y}
$$

with
$\hat{\boldsymbol{\beta}}=\left[\begin{array}{l}\hat{\beta}_{0} \\ \hat{\beta}_{1} \\ \cdots \\ \hat{\beta}_{P}\end{array}\right], \mathbf{X}=\left[\begin{array}{lllll}1 & x_{t_{n}-n} & x_{t_{n}-n}^{2} & \cdots & x_{t_{n}-n}^{P} \\ 1 & x_{t_{n}-n+1} & x_{t_{n}-n+1}^{2} & \cdots & x_{t_{n}-n+1}^{P} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_{t_{n}} & x_{t_{n}}^{2} & \cdots & x_{t_{n}}^{P}\end{array}\right], \quad \mathbf{y}=\left[\begin{array}{c}y_{t_{n}-n} \\ y_{t_{n}-n+1} \\ \vdots \\ y_{t_{n}}\end{array}\right]$

Going back to our example

- We apply polynominal regression with $P=2$ (quadratic) and $P=3$ (cubic)

- They both look quite nicer than the simple linear fit
- We are lucky here that the relationship truly is quadratic... if fitting higher-order polynominals, $\widehat{\beta}_{i}=0, p>2$
- In general, higher-order may yield spurious results(!)

With a more general nonlinear regression case

- Let's model something that looks more like a power curve, and try a cubic fit (polynomial regression with $P=3$)

- Indeed we need to find something better than simply fitting polynomials that way
- Ideas?

Local polynomial regression

- Use polynomial regression, though locally fitting those models

- Consider a number of m of fitting points, e.g., $0,0.1, \ldots, 1$
- Use some weighting function ω to give more or less importance to the various data points
- After fitting those models, we can reconstruct the full nonlinear regression curve by connecting the values obtained at the fitting points

Local polynomial regression

- Let us concentrate on a given fitting point x_{u}, e.g. $x_{u}=0.6$
- If aiming to fit a model that represents what happens in the neighborhood of x_{u}, more importance is to be given to data points close to x_{u}

- For all data points $\left\{\left(x_{t}, y_{t}\right)\right\}_{t}$, the corresponding weight w_{t} can be defined as

$$
w_{t}=\omega\left(x_{t}-x_{u}, \boldsymbol{\kappa}\right)
$$

- For instance with ω a Gaussian kernel,

$$
\omega\left(x_{t}-x_{u}, \sigma\right)=\exp \left(-\frac{\left(x_{t}-x_{u}\right)^{2}}{2 \sigma^{2}}\right)
$$

(Example Gaussian kernel with $x_{u}=0.6$ and $\sigma=0.05$)

Weighted Least Squares (WLS) estimation

- The previously introduced LS estimators can be generalized to account for weights given to data points

The Weighted Least-Squares (WLS) estimate $\hat{\boldsymbol{\beta}}$ of the polynomial regression model parameters fitted at x_{u} is given by

$$
\begin{aligned}
& \hat{\boldsymbol{\beta}}=\arg \min _{\boldsymbol{\beta}} \sum_{t} w_{t} \varepsilon_{t}^{2}=\arg \min _{\boldsymbol{\beta}} \sum_{t} w_{t}\left(y_{t}-\boldsymbol{\beta}^{\top} \mathbf{x}_{t}\right)^{2}=\left(\mathbf{X}^{\top} \mathbf{W} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{W} \mathbf{y} \\
& \text { with } \\
& \hat{\boldsymbol{\beta}}=\left[\begin{array}{l}
\hat{\beta}_{0} \\
\hat{\beta}_{1} \\
\cdots \\
\hat{\beta}_{P}
\end{array}\right], \mathbf{X}=\left[\begin{array}{lllll}
1 & x_{t_{n}-n} & x_{t_{n}-n}^{2} & \ldots & x_{t_{\beta}-n}^{P} \\
1 & x_{t_{n}-n+1} & x_{t_{n}-n+1}^{2} & \cdots & x_{t_{n}-n+1}^{P^{2}} \\
\vdots & \vdots & \vdots & & \vdots \\
1 & x_{t_{n}} & x_{t_{n}}^{2} & \ldots & x_{t_{n}}^{P}
\end{array}\right], \mathbf{y}=\left[\begin{array}{c}
y_{t_{n}-n} \\
y_{t_{n}-n+1} \\
\vdots \\
y_{t_{n}}
\end{array}\right] \\
& \text { and } \mathbf{W}=\left[\begin{array}{llll}
w_{t_{n}-n} \\
& w_{t_{n}-n+1} & & \\
0 & & \ddots & \\
0 & & & w_{t_{n}}
\end{array}\right]
\end{aligned}
$$

Applying the idea to a few fitting points

- First for that we focused on, i.e., $x_{u}=0.6$, say with a polynomial of degree 1

Applying the idea to a few fitting points

- First for that we focused on, i.e., $x_{u}=0.6$, say with a polynomial of degree 1

- And then for another fitting point, $x_{u}=0.2$, say with a polynomial of degree 2

The resulting power curve model

- We first fix a polynomial order, choice of kernel and its parameters, and number of fitting points,
- We then apply local polynomial regression at all fitting points and record the value at those points, and eventually connect all those points, e.g., with linear interpolation

Use the self-assessment quizz to check your understanding!

