Module 10 - Renewable Energy Forecasting: Advanced Topics

10.1 From linear to nonlinear regression
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A motivation for polynomial regression

@ We have obtained input-output pairs {(x, y¢)}+ over the last 200 time steps and aim to model
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Using linear regression does not look like such a good idea...
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Linear regression

i

@ A simple linear relation is assumed between x and vy, i.e.,
yve=0o+Pixe+e, t=t,—n,... t
where

e o and B; are the model parameters (called intercept and slope)

@ &: is a noise term, which you may see as our forecast error we want to minimize

The linear regression model can be reformulated in a more compact form as

ytZBTXt+5t, t:t,,—n,...,tn
with

o[3] ne[2]
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Least Squares (LS) estimation

i

@ Now we need to find the best value of 3 that describes this cloud of point

o Under a number of assumptions, which we overlook here, the (best) model parameters 3 can be
readily obtained with Least-Squares (LS) estimation

The Least-Squares (LS) estimate ﬁ of the linear regression model parameters is given by

A 2
B =argming ), = argming >, (yt - ,BTxt> = (XTX)"1XTy

with
1 Xt,—n Yto—n
b1 oo :
I x, Yt,
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Extending to polynomial regression

i

@ We could also assume more generally a polynomial relation between x and y, i.e.,
_ P p _
}’t—BO‘f’Zp:prXt‘f'Eta t=th—n,....ty
where

e By, p=0,...,P are the model parameters

@ &: is a noise term, which you may see as our forecast error we want to minimize

This polynomial regression can be reformulated in a more compact form as

T .
}/t:,[). Xt+5t7 I:tn—n7...,tn

with
Bo 1
3= B 7 x = | %
B <F
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Least Squares (LS) estimation

i

@ As the model is linear we can still use LS estimation!

The Least-Squares (LS) estimate ﬁ of the linear regression model parameters is given by

X 2
B = argming ), £ = arg ming ), (yt — ,BTxt) = (XTX)"1XTy

with
A 2 P
5o I Xe,—n Xty—n cee Xtp Ytn—n
~ 3
A B1 1 Xt,—nt1 Xtp—n+1 -+ Xt _nt1 Yt,—n+1
ﬁ = . ’ X= : . . , Y= .
~ - : - 2 : P
Bp 1 x, Xz, cee X Yt
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Going back to our example

i

@ We apply polynominal regression with P = 2 (quadratic) and P = 3 (cubic)
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@ They both look quite nicer than the simple linear fit

@ We are lucky here that the relationship truly is quadratic... if fitting higher-order polynominals,
/BI' = 07 p > 2
@ In general, higher-order may yield spurious results(!)
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With a more general nonlinear regression case
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>
@ Let's model something that looks more like a power curve, and try a cubic fit (polynomial
regression with P = 3)
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@ Indeed we need to find something better than simply fitting polynomials that way
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Local polynomial regression
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Use polynomial regression, though locally fitting those models
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: @; o Consider a number of m of fitting points, e.g.,
| ozgf’ 0,0.1,...,1
G o Use some weighting function w to give more
. ;’@” or less importance to the various data points
R
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After fitting those models, we can reconstruct the full nonlinear regression curve by connecting the
values obtained at the fitting points
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Local polynomial regression

i

@ Let us concentrate on a given fitting point x,, e.g. x, = 0.6

o If aiming to fit a model that represents what happens in the neighborhood of x,, more importance
is to be given to data points close to x,
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@ For all data points {(xz, yt)}¢, the

. corresponding weight w; can be defined as
S 7
> : %an
- 2 wy = w(Xe — Xy, K)
S (iad
m
8 & . .
°© 0y @ For instance with w a Gaussian kernel,
o | evpien Bl
© T T T T T T (Xt —_ Xu)2
0.0 02 04 06 08 10 w(xt — Xuy O’) =&Xpl\ =55
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(Example Gaussian kernel with x, = 0.6 and o = 0.05)
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Weighted Least Squares (WLS) estimation

i

@ The previously introduced LS estimators can be generalized to account for weights given to data
points

The Weighted Least-Squares (WLS) estimate B of the polynomial regression model parameters fitted
at x, is given by

n 2
B = argming ), wee? = arg ming ), w; (yt — ,BTxt) = (XTWX)~IXTwy

with

A 2 P
ﬁo 1 Xt,—n Xt,,—n th—n Yto—n
A 2 P
A b1 L Xty—nt1 Xgong1 oo Xenia Yto—n+1
ﬁ = .. Y X = . . ) y =
Bp 1 X Xt2" . Xt’: Yt,
Wt,—n 0
Wt,—n+1
and W =
0 W,

n
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Applying the idea to a few fitting points

i

@ First for that we focused on, i.e., x, = 0.6, say with a polynomial of degree 1
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Applying the idea to a few fitting points

i

@ First for that we focused on, i.e., x, = 0.6, say with a polynomial of degree 1
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@ And then for another fitting point, x, = 0.2, say with a polynomial of degree 2
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The resulting power curve model

i

o We first fix a polynomial order, choice of kernel and its parameters, and number of fitting
points,

@ We then apply local polynomial regression at all fitting points and record the value at those points,
and eventually connect all those points, e.g., with linear interpolation
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Use the self-assessment quizz to
check your understanding!
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[credits: Mediehuset Ingenieren]
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