Module 10 - Renewable Energy Forecasting: Advanced Topics

Module introduction

General considerations

- Forecasting is about the future! Lead times within 0-48 hours, in line with market-based operations
- When being at time t and aiming to generate a forecast for time $t+k$, only knowledge available at time t can be used...
- observations up to time t : power generation, meteorological measurements, etc.
- weather forecasts for the period of interest

- Since forecasts will always have a part of error, just accept, and try to minimize it

The essence of the forecasting problem

- Energy forecasting problems rely on some form of regression with a set of input-output ordered in time
- In practice this means that:
- At time t_{n}, our dataset include a number of explanatory variable values $\left\{\mathbf{x}_{t+k}\right\}_{t<t_{n}-k}$ and response variable observations $\left\{y_{t+k}\right\}_{t<t_{n}-k}$.
Ex: wind speed forecast and power production
- We aim at finding a relationship between explanatory and response variables based on past data, i.e.

$$
y_{t+k}=f\left(\mathbf{x}_{t+k} ; \theta\right)+\varepsilon_{t+k}, t<t_{n}-k
$$

where ε_{t+k} is a noise with 0 mean and finite variance, θ is a set of parameters that characterize f

- The forecaster is to propose a way to stucture and learn f, and associated parameters.

Ex: f is a linear function, 2 parameters are to be estimated

- To issue forecasts using new values for explanatory variables,

$$
\hat{y}_{t_{n}+k \mid t_{n}}=f\left(\mathbf{x}_{t_{n}+k ;} ; \hat{\theta}\right)
$$

where $\hat{\theta}$ are the parameters estimated

- Beyond this simple base case, decisions have to be make on how to optimally use input data, the shape of f, method for parameter estimation, etc.

Power curve modelling

This is snapshot of conversion from wind to power to be modelled

Learning objectives

Through this module, it is aimed for you to be able to:
(1) Go further than using linear regression techniques in renewable energy forecasting
(2) Have a basis for making data-driven decisions for improving models to be used for forecasting
(3) Have an understanding of nonstationarity and ways to account for it when modelling

Module outline

Module 10 is based on 3 video lectures and associated self-assessment quizzes:

10.1 From linear to nonlinear regression

10.3 Data-driven decisions

Good luck with Module 10!

