
Chapter 7
Trading Stochastic Production in Electricity
Pools

7.1 Introduction and Decision Framework

Recent years have witnessed an exceptional technological development that, along
with increasing political pressure to cut CO2 emissions and to create local jobs,
spurred an unprecedented growth in installed production capacity from renewable
sources. To sustain such growth, national governments have put in place special
support schemes (tax credits, feed-in tariffs, etc.) for easing the market participation
of renewable producers.

As the energy cost of renewables constantly decreases approaching grid parity,
green power needs smaller and smaller incentives for being competitive. For this
reason, renewable power producers are increasingly required to participate in elec-
tricity markets under the same rules as conventional power producers. In particular,
as opposed to feed-in tariff schemes, they are more and more frequently subject to
market prices and assigned balance responsibility. The former implies that renew-
able electricity producers are subject, like any other power producer, to price risk.
Besides, the latter implies that they are financially accountable for the additional
balancing costs incurred by the system operators, which in practice means that they
need to correct their energy imbalances by trading in the balancing market.

Although renewable producers are asked to participate in the market in the same
way as conventional producers, trading green energy presents substantial differences
when compared to the case of conventional power sources. Firstly, the actual produc-
tion is variable and uncertain at the time of offering. This uncertainty, coupled with
the stochastic nature of power prices, results in uncertain returns depending on the
realization of both power production and prices. Secondly, renewable producers are
forced to participate in multiple markets, because markets with early gate closures—
day-ahead- markets—have more stable prices and, in parallel, deviations of the actual
production from the contractual positions at the day-ahead and adjustment markets
must be settled at the balancing market.

As the market design often—although not always—penalizes real-time devia-
tions from (and in general later corrections of) the day-ahead schedule, renewable
power producers are in a disadvantaged position compared to conventional producers.
As a partial solution to these disadvantages, renewable power producers can trade
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strategically, in the attempt to get the most out of the information they possess on
the uncertain variables in play. This chapter focuses on the determination of optimal
trading strategies for renewable power producers participating in electricity pools.
Owing to the stochastic features and the multiple market layers described above, this
is a multistage problem of decision-making under uncertainty.

Two basic assumptions are made in this chapter. The first one entails that incen-
tives such as price premia added on top of market prices, feed-in tariffs, etc., are
discarded. As a result, renewable energy is traded under exactly the same rules as
the conventional one. This simplification is introduced for the sake of clarity and
generality as different markets have different incentive schemes. Nevertheless, the
tools developed here could be extended so as to account for these incentives with
little effort. The second assumption is that renewable power producers participate
in the electricity pool on their own. This means that the optimal trading strategies
developed in this chapter do not account for possible associations with other market
entities, e.g., owners of storage devices or flexible demand, which are treated in
Chaps. 8 and 9, respectively.

This chapter is structured as follows. Section 7.2 presents the basic problem
formulation and introduces some common concepts in decision-making under un-
certainty. Optimal strategies are determined analytically in Sect. 7.3 for offering in
the day-ahead and balancing markets considering deterministic electricity prices.
Section 7.4 develops different strategies in a series of cases with stochastic market
prices. Section 7.5 considers the case of a risk-averse stochastic producer. Thereafter,
Sect. 7.6 models the problem in the framework of stochastic programming, which is
more versatile as it can accommodate any type of probabilistic multivariate distribu-
tion of the uncertainty as well as different risk metrics. Finally, Sect. 7.7 concludes
the chapter.

7.2 Revenue and Imbalance Cost: Concept and Definition

In this section, we introduce the basic formulation of the problem of optimal trading
when the production volume is uncertain, which is the case for renewable energy
sources such as wind and solar. In parallel, some concepts of decision-making under
uncertainty are presented.

In order to set up the problem in a simple framework, we introduce the following
assumptions. Later on in the development of this chapter, assumptions A1–A3 will
be gradually removed.

A1 The stochastic producer trades only at the day-ahead and at the balancing market,
while adjustment markets are discarded from the analysis.

A2 The only uncertainty is related to the production volume, while market prices
are deterministic and known in advance.

A3 The producer is risk-neutral, meaning that it aims at the maximization of the
expected profits with disregard of possible losses.

A4 The stochastic producer is a price-taker, i.e., market prices do not depend on the
employed offering strategy.
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Assumptions A1 and A4 are critical for obtaining an analytical solution to the trading
problem. On the other hand, assumption A2, which is exploited in the derivations in
Sect. 7.3, is mainly for presentation convenience. Indeed, Sect. 7.4.1 shows that, un-
der the assumption that production and market prices are uncorrelated, prices can be
substituted by their expected values. Analytical solutions are still available under less
restrictive assumptions on the correlation between day-ahead and balancing market
prices; they are presented in Sect. 7.4.1. Further results obtained considering the
correlation between prices and production are presented in [6]. The risk-neutrality
assumption A3 is justified by the relatively high frequency with which the produc-
ers offer in electricity markets. This implies that the possible losses incurred in
a single trading period are small if aggregated over a reasonable time-span. Sec-
tion 7.5 presents some analytical results available when considering a risk-averse
power producer.

As we show in Sect. 7.6, the stochastic programming framework provides the
necessary flexibility to treat the trading problem for stochastic power producers
disregarding the assumptions A1–A3 above.

To get rid of the price-taker assumption A4, one can employ mathematical pro-
grams with equilibrium constraints (MPEC), see Appendix B and [7]. Given its
complexity, this topic is not covered here. However, we refer the interested reader to
[2] and [18], where stochastic MPECs are applied to trading problems of renewable
suppliers.

In the remainder of this section, we consider the cases of one-price and two-price
markets separately.

Before getting started, two important clarifications should be made. Firstly, we
assume that the renewable electricity producer is located at a certain bus of the
transmission network. For the sake of simplicity, we always use the term “market
price.” However, if considering a market with nodal pricing, “market price” has
the meaning of “locational marginal price (LMP) at the bus of interest.” Similarly
in a market with zonal pricing, such term would refer to the relevant zonal price.
Notice that the generalization of the models presented in this chapter to the case of a
producer whose plants are located in different nodes, or zones, of the power network
is straightforward.

Secondly, there are no intertemporal constraints in the problems we analyze. This
means that we focus on single-period models, and thus time indexes are dropped
from the mathematical formulations.

7.2.1 One-Price Market

In a one-price balancing market, deviations from day-ahead contracts are traded at
a unique balancing price regardless of the sign of producer and system imbalances.
Generally, the balancing market price is higher than the day-ahead price if the system
is in up-regulation, i.e., when the system is in deficit of power production as a result
of all the deviations from producers and consumers with respect to their day-ahead
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Fig. 7.1 Producer imbalance
and arbitrage opportunity
between balancing and
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positions. Conversely, in the down-regulation case (i.e., when the system has a surplus
of generation) the balancing price is lower than the day-ahead price.

Due to the pricing rules described above, the participation at both the day-ahead
and the balancing market opens arbitrage opportunities for power producers. When
the producer’s real-time imbalance with respect to the day-ahead contract is in the
opposite direction compared to the overall system imbalance, power producers re-
ceive a more favorable price at the balancing market. Indeed, they can sell excess
energy (positive imbalance) compared to their day-ahead position at a higher price
than the day-ahead price when the system is in up-regulation, and repurchase their
production deficit (negative imbalance) at a lower price in the down-regulation case.
On the other hand, the balancing price is less favorable when the producer and the
system deviations are in the same direction. Figure 7.1 summarizes these comments
by showing the arbitrage opportunity as a function of the producer imbalance in
the two regulation cases. Clearly, because the arbitrage opportunity is equal to the
imbalance times the difference in price between the balancing and the day-ahead
market, the relation is linear.

We begin our derivation by writing down the total profit during a single trading
period for the stochastic power producer, which is equal to the product between
the exchanged energy volume and the respective price, summed over all the market
stages. Under assumption A1 in Sect. 7.1, only the day-ahead and the balancing
markets are considered here.

Let us indicate prices with � and traded production with E, with the superscripts
D and B when these quantities refer to the day-ahead and to the balancing market,
respectively. In a one-price system, a single balancing market price �B is applied for
both sale and purchase of energy in real-time. Therefore, profits write down as

ρ̃ = �D
ED︸ ︷︷ ︸

day-ahead market

+ �B
ẼB︸ ︷︷ ︸

balancing market

. (7.1)

The only decision variable in this formulation is ED. This is because prices are ex-
ogenous variables under the price-taker assumption A4 made in the previous section.
Furthermore, there are no degrees of freedom in the choice of the energy exchange
ẼB at the balancing market. Indeed, this quantity is bound to match the difference
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between the day-ahead schedule and the actual production, i.e.,

ẼB = Ẽ − ED. (7.2)

Being dependent on the uncertain production Ẽ, the real-time exchange ẼB is
stochastic, and so is the profit.

A relevant question when a decision-maker is exposed to stochastic profits is
the definition of the objective of the optimal strategy. Owing to the risk-neutrality
assumption A3, the producer is in this case interested in maximizing its profits
in expectation, regardless of whether the shape of the profit distribution entails the
possibility of incurring large losses. As we discuss in the following sections, decision-
makers are not always risk-neutral, since in some circumstances possible losses are
large enough to cause them financial problems.

In decision theory, the expected value of the profits for a certain decision goes
under the name of expected monetary value (EMV). Replacing (7.2) into (7.1), and
taking the expectation yields the following expression for the EMV:

E {ρ̃} = (�D − �B)
ED + �B

Ê, (7.3)

where Ê is the expected value of power production in the trading period considered.

7.2.2 Two-Price Market

In a two-price market, real-time deviations are priced differently depending on the
imbalance sign. Deviations that are in the opposite direction to the overall system
imbalance, which help the system restore the balance between production and con-
sumption, are priced at the day-ahead market price. On the contrary, imbalances of
the same sign as that of the system are settled at the clearing price of the balancing
market. Let us denote the up-regulation and down-regulation prices with �UP and
�DW, respectively, while the clearing price at the balancing market is still �B. The
pricing rule in a two-price balancing market implies the following

�UP =
{

�B if �B ≥ �D,

�D if �B
< �D,

(7.4)

�DW =
{

�D if �B ≥ �D,

�B if �B
< �D

.
(7.5)

As Fig. 7.2 shows, and contrarily to the one-price system, there is no arbitrage
opportunity when the producer deviation is in the opposite direction to the overall
system imbalance, since the price obtained at the balancing market is equal to the
day-ahead market price. On the contrary, there is still an opportunity loss when
producer and system deviations have the same sign.
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Fig. 7.2 Producer imbalance
and arbitrage opportunity
between balancing and
day-ahead markets in the
two-price system

Up-regulation
Down-regulation

Imbalance

Arbitrage
opportunity

As a result of this pricing rule, the term accounting for the balancing market profit
in (7.1) splits in two when considering such a market settlement, resulting in the
following formulation for the total profits

ρ̃ = �D
ED︸ ︷︷ ︸

day-ahead market

+ �UP
ẼUP + �DW

ẼDW︸ ︷︷ ︸
balancing market

. (7.6)

The symbols ẼUP and ẼDW refer to energy up-regulation and down-regulation for
the producer at the balancing market, respectively. We recall that the power producer
has to purchase upward regulation power at the balancing market when its actual
production Ẽ is lower than the day-ahead position, ED, while downward regulation
is to be sold when Ẽ is larger than ED. In mathematical terms, this writes

ẼUP =
{

Ẽ − ED if Ẽ − ED ≤ 0,

0 if Ẽ − ED > 0,
(7.7)

ẼDW =
{

0 if Ẽ − ED ≤ 0,

Ẽ − ED if Ẽ − ED > 0.
(7.8)

From the definition of up-regulation and down-regulation, it follows that

Ẽ − ED = ẼUP + ẼDW. (7.9)

Solving the previous equation for ED and substituting the resulting expression in
(7.6) yields

ρ̃ = �D
Ẽ − [(�D − �UP)

ẼUP + (�D − �DW)
ẼDW

]
. (7.10)

We notice that the first term of the sum in (7.10) is not under control of the power
producer, in that neither �D nor Ẽ are dependent on its decisions. Furthermore, both
terms inside brackets are nonnegative. This is because in a two-price system, pricing
rules (7.4) and (7.5) entail that �UP ≥ �D and �DW ≤ �D, and because (7.7) and (7.8)
imply that ẼUP ≤ 0 and ẼDW ≥ 0.
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The first term in (7.10) represents the profit that could be obtained by the producer,
in a two-price system, if it had perfect information on the future realization of the
stochastic production Ẽ. Clearly in this case, the producer would sell the (certain)
production entirely at the day-ahead market, since as Fig. 7.2 shows there is never
a strictly positive arbitrage opportunity between the balancing market and the day-
ahead one. The term within brackets in (7.10) is the imbalance costs that the producer
faces when settling its regulation volume at the balancing market. This sum represents
an opportunity loss, in that it quantifies the missing profits stemming from not being
able to sell the uncertain production entirely, or for selling more than the actual
production, at the day-ahead market.

Taking the expectation on both sides of (7.10), we get the following

E {ρ̃}︸ ︷︷ ︸
EMV

= �D
Ê − E

{(
�D − �UP)

ẼUP + (�D − �DW)
ẼDW

}
︸ ︷︷ ︸

EOL

, (7.11)

where Ê is the expected power production and therefore, �D
Ê is the expected profit

given perfect information. We will refer to the expectation term on the right-hand side
of (7.11) equivalently as the expected imbalance costs or as the expected opportunity
loss (EOL).

Equation (7.11) states a general fact of decision-making under uncertainty: for
any strategy, the sum of the expected monetary value (EMV) and the EOL is constant
and equal to the expected profit obtained with perfect information. Therefore, we
can alternatively look at the optimal strategy of a risk-neutral decision-maker either
as the strategy maximizing the EMV, or as the decision minimizing the EOL. In the
next section, we will determine the optimal offer for a stochastic power producer in
the two-price system by formulating the problem as the minimization of the EOL.

As a final remark of this section, we point out that the minimum value of the EOL
among all the feasible decisions is of particular importance. Such quantity is referred
to as the expected value of perfect information (EVPI) . The EVPI represents the profit
improvement that the decision-maker would experience if it held perfect information
on the realization of the uncertainty, compared to the best performance achievable
with the employed characterization of the stochastic parameters. Hence, this quantity
also indicates how much the decision-maker would pay at most for obtaining perfect
information on the contingent process. As such, the EVPI represents an upper bound
to the value of an improved forecasting model for the uncertainty.

7.3 Trading with Deterministic Prices: Bidding Quantities

This section presents some analytical results for the determination of optimal trading
strategies for stochastic producers when market prices are deterministic, i.e., known
in advance with certainty. Similarly to the previous section, results for the one-price
and the two-price markets are presented separately.
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7.3.1 One-Price Market

The final result in Sect. 7.2.1 was the formulation (7.3) for the expected profits
of a stochastic power producer in a one-price market. Equation (7.3) reveals the
triviality of the determination of the optimal offer in a one-price system when prices
are deterministic. Indeed, the second term on the right-hand side of (7.3) does not
depend on the producer’s decision. Therefore, this constant term can be discarded
from the determination of the optimum. As far as the optimization of the first term
is concerned, the following cases can happen, all with a trivial solution.

1. If �D
< �B, the power producer sells nothing at the day-ahead market, and waits

to place all its production at the balancing market, where the price �B is higher.
2. If �D

> �B, the power producer sells as much energy as possible at the day-ahead
market, eventually buying back at the balancing market the energy needed to cover
the difference between day-ahead trade and actual production (7.2). As �B

< �D,
the producer realizes a surplus on the energy that is sold at the day-ahead market
but not delivered.

3. If �D = �B, the power producer is indifferent since any decision on ED would
yield the same profit.

Given that, in electricity markets, producers are usually imposed not to offer above
their installed capacity E, we have the following result.

In a one-price system, under the assumption of deterministic market prices,
the optimal offer for a risk-neutral stochastic power producer is price-inelastic
and equal to zero volume if the balancing price is higher than the day-ahead
price, while it is equal to the nominal capacity E if the balancing price is lower
than the day-ahead price; if such prices are equal, any offer is optimal.

The expression “price-inelastic” in the previous sentence means that the optimal offer
is either zero or the nominal capacity, regardless of the value of the day-ahead price.
As we shall see in Sect. 7.4.2, this is particularly meaningful as market rules allow
producers to specify their offer as a price-quantity curve.

The solution obtained in this simplified case is trivial and, besides, completely de-
coupled from the forecast of the stochastic power production, as it is only dependent
on the forecast of the arbitrage opportunity between the day-ahead and the balancing
markets.

Furthermore, it should be pointed out that the statement that the rightmost term
in (7.3) is not under the control of the power producer is not completely true. In
principle, power producers could spill their excess production if economically at-
tractive. This has little impact on the optimal day-ahead strategy described above,
but it would imply that, should the price �B be negative, the producer would rather
spill its power production and gain additional profits when repurchasing power.
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7.3.2 Two-Price Market

It is relevant to recall that the optimal strategy for a risk-neutral stochastic producer
minimizes the expected imbalance costs, i.e., the EOL in (7.11). Before carrying out
the necessary algebra, we define the following penalties, both nonnegative

ψUP =�UP − �D, (7.12)

ψDW =�D − �DW
. (7.13)

It is important to notice that ψUP and ψDW represent the opportunity loss per energy
unit, i.e., the profits lost by exchanging up-regulation and down-regulation energy
at the balancing market instead of at the day-ahead stage. Substituting the above
quantities in the EOL term in (7.11), we get the following expression

EOL = E
{−ψUPẼUP + ψDWẼDW

}
. (7.14)

We determine the optimal day-ahead offer in the following way: first, we expand the
expectation in (7.14) into an integral in the probability space of uncertain production;
then, the first-order stationarity condition is enforced.

The terms inside the expectation operator in (7.14) can be expanded. Owing to
the piecewise definitions of up-regulation and down-regulation in (7.7) and (7.8),
respectively, each term in (7.14) expands into an integration in a half-space of the set
of feasible day-ahead offers

[
0, E

]
, split in two halves by the day-ahead offer ED,

i.e.,

EOL = −
∫ ED

0
ψUP

(
E − ED

)
pẼ(E)dE +

∫ E

ED
ψDW

(
E − ED

)
pẼ(E)dE,

(7.15)

where pẼ( · ) is the probability density function (pdf) of the stochastic power produc-
tion Ẽ. The reader is referred to Appendix A for an introduction to random variables
and to the concept of probability density function.

To determine the optimum, we enforce the first-order stationarity condition by
taking the derivative of expression (7.15) with respect to the day-ahead offer ED and
setting it equal to 0. Carrying out the differentiation under the integral sign, see [9],
yields the following

dEOL

dED
= − ψUP

∫ ED

0
−pẼ(E)dE + ψDW

∫ E

ED
−pẼ(E)dE

=ψUPFẼ(ED) + ψDW
(
FẼ(ED) − 1

) = 0, (7.16)

where FẼ( · ) indicates the cumulative distribution function (cdf) of power produc-
tion, see Appendix A. Solving (7.16) for the day-ahead offer ED readily yields the
following expression

ED∗ = F−1
Ẽ

(
ψDW

ψUP + ψDW

)
, (7.17)
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which involves the inverse F−1
Ẽ

( · ) of the production cdf, i.e., the quantile function,

which is defined in Appendix A. The optimality of ED∗ in (7.17) can be easily
checked by noticing that the second order derivative of EOL with respect to ED is
nonnegative everywhere

d2EOL

dED2 (ED) = ψUPpẼ(ED) + ψDWpẼ(ED) ≥ 0. (7.18)

This is because probability density functions are nonnegative by definition, and so
are the penalties according to (7.12) and (7.13). As a consequence of (7.18) and under
mild continuity assumptions, the EOL is convex with respect to ED, which implies
that the first-order stationarity condition (7.16) is sufficient to ensure that ED∗ is a
minimum. The results obtained so far can be summarized in the following statement.

In a two-price system, under the assumption of deterministic market prices,
the optimal day-ahead offer for a risk-neutral stochastic power producer is
price-inelastic and equal to the quantile of the power production distribution
corresponding to a probability equal to the down-regulation penalty divided
by the sum of the up-regulation and down-regulation penalties.

Example 7.1 (Optimal bid in a two-price settlement with deterministic prices) Let
us consider the following deterministic penalties due to the less favorable price at
the balancing market

ψUP =$9/MWh,

ψDW =$4/MWh.

An analyst provides us with a probabilistic forecast of the stochastic power production
at trading period t of the following day. We refer the reader to Chap. 2 for an
introduction to forecasting the production from renewable sources. According to the
analyst, power production follows a uniform distribution, see Appendix A, between
100 MWh and 150 MWh. The cumulative distribution function is therefore

FẼ(E) =

⎧⎪⎪⎨
⎪⎪⎩

0 if E < 100,
E − 100

50
if 100 ≤ E < 150,

1 if E ≥ 150.

(7.19)

According to (7.17), the optimal offer must satisfy

FẼ(ED∗
) = ψDW

ψUP + ψDW
= 4

13
, (7.20)

which yields, by inverting the function in the second case in (7.19)

ED∗ = 100 + 50 × 4

13
MWh = 115.38 MWh. (7.21)
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Fig. 7.3 Expected imbalance
cost (EOL) as a function of
the day-ahead offer. The
expected profit is the
difference between the
expected profit with perfect
information (PI) and the EOL
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It is worth noticing that this result makes sense also from an intuitive point of view.
Indeed, the optimal quantity offer is lower than 125 MWh, which is both the mean
and the median of the power production distribution. This is in accordance with the
fact that the penalty ψUP for underproducing with respect to the day-ahead market
contract is higher than the penalty ψDW for overproducing, which makes a long
position at the day-ahead market more attractive.

Figure 7.3 shows the expected imbalance cost (expected opportunity loss) as a
function of the day-ahead offer. According to (7.11), the expected profit obtained
with a given day-ahead offer ED is the difference between the expected profit with
perfect information (PI) and the EOL. The optimal quantity offer ED∗ is a minimum
point for the expected imbalance cost and, as a consequence, a maximum point
for the expected profit. Observe that the expected profit with perfect information is
calculated with a day-ahead price �D = $50/MWh.

It is relevant to note that the closed formula (7.17) for the optimal day-ahead
offer rests on the assumption that the cumulative distribution function FẼ( · ) be
invertible. In fact, we already know that FẼ( · ) is, by definition of cdf, monotonically
increasing, though the monotonicity may be nonstrict. In the latter case, the closed
formula (7.17) is still valid using the generalized inverse function

F−1
Ẽ

(α) = inf
{
x ∈ [0, E

]
: FẼ(x) ≥ α

}
. (7.22)

In fact, any amount ED such that FẼ(ED) = ψDW/(ψDW + ψUP) is optimal in this
case.

Finally, we underline that expression (7.17) always makes sense, in that the ratio
ψDW/(ψUP + ψDW) is always included in the interval [0, 1]. This follows trivially
from the nonnegativity of ψUP and ψDW.

7.4 Trading with Stochastic Prices

In the previous section, we derived some results on the optimal trading of stochastic
power producers under simplified assumptions, among which was the restrictive
hypothesis of deterministic prices. In what follows, we relax this simplification by
assuming that prices are also uncertain.
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The trading problem presents an increased level of difficulty if prices are stochas-
tic. This additional difficulty stems from the fact that taking expectations of the power
producer’s profit in (7.1) and (7.10) entails the integration in two variables, namely
the power production and a market price (or penalty), which requires knowledge
of their joint probability density function. Furthermore, because market rules allow
power producers to differentiate the offered quantity depending on the day-ahead
clearing price, these expectations are to be conditioned on the latter quantity.

As usual, we increase the difficulty of the problem gradually. Section 7.4.1 treats
the special case of trading with stochastic prices, where the difference between the
balancing price and the day-ahead price (i.e., the penalty) is uncorrelated both with
the day-ahead price itself and with the stochastic power production. The results
obtained in the previous section still hold, though with some formal modifications.
In Sect. 7.4.2, the case where the penalty is uncorrelated with the power production,
but not with the day-ahead price, is considered.

7.4.1 Stochastic Generalizations of Quantity Bidding

We now turn our focus to the analysis of a special case, where the results obtained in
the previous section still hold under the assumption of uncertain prices—provided
that deterministic prices are replaced by their expected values. The critical assump-
tion here is that the difference between the balancing market price and the day-ahead
price is uncorrelated both with the day-ahead price itself and with the stochastic power
production. As customary, the cases of the one-price and the two-price markets are
considered separately.

7.4.1.1 One-Price Market

Resuming the analysis in Sect.7.2.1, the equivalent of the expected profit in (7.3) if
prices are stochastic is given by

E {ρ̃} = E

{(̃
�

D − �̃
B
)

ED
}

+ E

{̃
�

B
Ẽ
}
. (7.23)

The last term in (7.23) is not under control of the stochastic power producer. There-
fore, the optimal bid must maximize the first term on the right-hand side of (7.23).

Assuming that the difference �̃
D − �̃

B
is uncorrelated with the day-ahead price, there

is no additional benefit in differentiating the offered quantity with respect to the day-
ahead price through a bidding curve. In other words, the optimal offer still consists
of a single quantity. Taking the expectation of (7.23), we obtain

E {ρ̃} = E

{̃
�

D − �̃
B
}

ED + E

{̃
�

B
Ẽ
}
. (7.24)

The conclusion on the optimal day-ahead offer is similar to the one in Sect. 7.3.1.
The following cases can happen.



7.4 Trading with Stochastic Prices 217

1. If E

{̃
�

D − �̃
B
}

< 0, the optimal bid is 0.

2. If E

{̃
�

D − �̃
B
}

> 0, the optimal bid is the nominal capacity.

3. If E

{̃
�

D − �̃
B
}

= 0, the power producer is indifferent since any decision on

ED would yield the same profit in expectation.

In a one-price system with stochastic prices, under the assumption that the
difference between the balancing and the day-ahead prices is uncorrelated
with both the day-ahead price and the power production, the optimal offer for
a stochastic power producer is price-inelastic and equal to zero volume if the
expectation of the balancing price is higher than the expected day-ahead price,
while it is equal to the nominal capacity E in the opposite case; if the expected
prices are equal, any offer is optimal.

We remark that the assumption of the difference between the day-ahead and the
balancing market prices being independent from the day-ahead price itself is rather
restrictive. If this assumption is relaxed, as we show in the following part of this
section, the optimal offer is no longer a single quantity.

Example 7.2 (Optimal bid in a one-price settlement with uncorrelated price differ-
ence and day-ahead price) The price at the balancing market is equal to

�̃
B = �̃

D + ũ, (7.25)

where ũ is uniformly distributed in the interval between −$20/MWh and $30 /MWh.
As a result, the difference between the day-ahead and the balancing market prices
is independent of and therefore uncorrelated with the day-ahead price itself. The
expected value of the price difference is

E

{̃
�

B − �̃
D
}

= E {̃u} =
∫ 30

−20
u

1

50
du = $5/MWh. (7.26)

As the price difference is positive in expectation, the profit is maximized by bidding
0 at the day-ahead market and placing all the production at the balancing market.

7.4.1.2 Two-Price Market

In a two-price market, under the assumption that the market penalties (7.12) and
(7.13) are stochastic and uncorrelated with the day-ahead price and the power
production, the expectation of the imbalance costs in (7.15) writes as

EOL = −
∫ ED

0

∫ ∞

0
ψUP

(
E − ED

)
pψ̃UP,Ẽ(ψUP, E)dψUPdE

+
∫ E

ED

∫ ∞

0
ψDW

(
E − ED

)
pψ̃DW,Ẽ(ψDW, E)dψDWdE. (7.27)
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Exploiting the definition of conditional probability (see Appendix A), (7.27) can be
rewritten as follows

EOL = −
∫ ED

0

(∫ ∞

0
ψUPpψ̃UP|Ẽ(ψUP|E)dψUP

) (
E − ED

)
pẼ(E)dE

+
∫ E

ED

(∫ ∞

0
ψDWpψ̃DW|Ẽ(ψDW|E)dψDW

) (
E − ED

)
pẼ(E)dE.

(7.28)

We notice that the integrals inside the parentheses in the above equations are the
expectation of the market penalties conditional on the realization of the stochastic
production. Since market penalties and power production are uncorrelated, the terms
inside the brackets are equal to their expected values ψ̂UP and ψ̂DW. At this point, the
derivation follows precisely the same steps as in Sect. 7.3.2, yielding the following
optimal quantity offer

ED∗ = F−1
Ẽ

(
ψ̂DW

ψ̂UP + ψ̂DW

)
. (7.29)

This result is similar to the one obtained in Sect. 7.3.2 and can be summarized in the
following statement.

In a two-price market with stochastic prices, the optimal offer for a stochastic
power producer under the assumption that imbalance penalties are uncorrelated
with its power production and the day-ahead price, is price-inelastic and equal
to the quantile of the power distribution corresponding to a probability equal
to the expected value of the down-regulation penalty divided by its sum with
the expected value of the up-regulation penalty.

Example 7.3 (Optimal bid in a two-price settlement with uncorrelated price differ-
ence and day-ahead price) We assume that the clearing price at the balancing market

is distributed as the balancing price �̃
B

in Example 7.2, and that the stochastic power
production is distributed as in Example 7.1.

Figure 7.4 shows the probability density function of the balancing market price,
and the resulting distributions for the up-regulation and down-regulation prices
λ̃UP, λ̃DW in the two-price system. According to the pricing rules (7.4) and (7.5),
the up-regulation price λ̃UP follows the same distribution as λ̃B for values greater
than the day-ahead price �D, while the part of the density function on the left of
the day-ahead price �D is compressed and placed at �D, which thus has a positive
probability of occurrence P{̃λUP = �D} = P{̃λB ≤ �D} = 0.4. In a similar fashion,
P{̃λDW = �D} = P{̃λB ≥ �D} = 0.6. The expected values of the up-regulation and
down-regulation penalties are given by

ψ̂UP = 0.4 × 0 +
∫ 30

0
ψUP 1

50
dψUP = $9/MWh, (7.30)
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Fig. 7.4 Probability density
function of a uniformly
distributed clearing price λ̃B

at the balancing market (top
axes), and the resulting
distributions of the
up-regulation and
down-regulation prices λ̃UP,
λ̃DW in a two-price settlement
(middle and bottom axes,
respectively)
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ψ̂DW =
∫ 20

0
ψDW 1

50
dψDW + 0.6 × 0 = $4/MWh. (7.31)

Noticing that the expected values of the imbalance penalties are equal to their
deterministic values in Example 7.1, and that the uncertain power production follows
the same distribution, the optimal day-ahead offer is again ED∗ = 115.38 MWh.

7.4.2 Correlated Penalties and Day-Ahead Price: Bidding Curves

Electricity market rules allow power producers to submit supply curves rather than
single quantities at day-ahead markets. Indeed, they can specify a certain number
of production-price pairs, where they declare how much power they are willing to
deliver at every price level indicated in the offer. By doing so, generators can offer
power produced by units employing different technologies, while being confident
that cost recovery is guaranteed for any realization of the stochastic price.

As such offer curves were conceived as an instrument for conventional power
producers, and due to technical reasons related to market pricing, supply-curves
must be nondecreasing, i.e., production-price pairs are to be ordered increasingly
in price. Since the ordering of production-price pairs determines the scheduling
preference, i.e., which supply blocks are chosen first when determining the power
dispatch, a nondecreasing supply curve entails that blocks with a lower offered price
are scheduled first. This is intuitively consistent with the preference of conventional
power producers. Indeed, under the assumption that bids reflect the true marginal cost
of generation, and disregarding non-convexities such as startup costs, conventional
power producers would obviously prefer the scheduling of units with the lowest
marginal cost to the more expensive ones, as this guarantees higher profits. Figure 7.5
shows an example of a supply curve for a producer employing different conventional
generation technologies. Only the first two (cheapest) blocks on the left, indicated
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Fig. 7.5 Supply curve offered
by a conventional power
producer in the day-ahead
market
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with dashed fill and whose price offer is not greater than the cleared day-ahead price
�D, are dispatched.

Owing to the fact that the marginal cost of power generation from stochastic
sources such as wind and solar is null (or close to zero), it may appear that supply
curves are not relevant for producers solely employing such technologies. Indeed,
the optimal supply curve for producers of firm (deterministic) power is, under the
price-taker assumption, the marginal cost of generation. From a simplistic analysis,
one may expect that the same holds for stochastic power producers, who would thus
be willing to sell the optimal quantity determined in the previous section at any
(positive) price. This holds true in the special case presented in Sect. 7.4.1, but not
in the general case.

The possibility of submitting a supply curve allows stochastic power producers to
define in advance the quantity to be delivered to the market as a function ED(�D) of
the realization of the stochastic day-ahead price. Clearly, the determination of several
quantity-price pairs is a far less constrained decision problem than the determination
of a single quantity to be offered for any realization of the day-ahead price. This
implies that the expected profit obtained with the optimal supply curve is at least
not lower than the one resulting from bidding a fixed quantity. As we shall see
in the following, the extent of this improvement depends on the level of correlation
between imbalance penalties, power production, and the day-ahead price. In the case
of uncorrelated variables, the optimal supply curve boils down to the fixed optimal
quantity already determined in Sect. 7.4.1. In a more general case, the expected
balancing prices, and therefore the optimal quantile of the power distribution, are
correlated with the day-ahead price.

A last remark before going deeper into the problem regards the shape of the
optimal curve. From the discussion above, it is clear that the requirement that the
supply curve be nondecreasing is not restrictive for a conventional power producer.
Indeed, it follows naturally from economic considerations that cheaper production
blocks are offered first, as the dispatch preference of the producer is completely
aligned with the increasing marginal costs of its production blocks. On the contrary,
an optimal bidding curve for a stochastic power producer does not obviously follow
this requirement in the general case. Determining the optimal nondecreasing supply
curve analytically is not a trivial problem. As we shall see in Chap. 8, this problem
can be solved by employing stochastic programming.
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In the remainder of the section, we deal with the closed-form determination of
the optimal bidding curve, individually for the one-price and the two-price case.

7.4.2.1 One-Price Market

In the general case where the quantities involved in the determination of the expected
profit (7.23) are correlated with the day-ahead price λ̃D, the stochastic power producer
can benefit from specifying the quantity offered at the day-ahead market as a function
of the cleared price, i.e., ED(�D). The expected profit for the producer conditioned
on the realization of the day-ahead price λ̃D = �D writes as

E
{
ρ̃|�D} = E

{̃
�

D − �̃
B|�D

}
ED(�D) + E

{̃
�

B
Ẽ|�D

}
. (7.32)

As in the previous sections, the second term on the right-hand side of (7.32) is not
dependent on the choice of the offered quantity ED(�D). In the absence of constraints
on the offer, the optimal quantity to be offered at the day-ahead price �D would be
either 0 or nominal capacity, depending on whether the conditional expectation of

�̃
D−�̃

B
is negative or positive, respectively. The determination of the optimal bidding

curve can then be carried out in a pointwise fashion for any value �D.

Example 7.4 (Optimal bidding curve in a one-price settlement) The expectation of
the price difference between the day-ahead and the balancing market, conditional on
the day-ahead market price, is

E

{̃
�

D − �̃
B|�D

}
= −17.5 + 1

4
�D

. (7.33)

We also expect the day-ahead price to be between $20/MWh and $80/MWh. There-
fore, the day-ahead offer curve should specify a production value for each of these
prices.

We notice that the value in (7.33) is zero for �D = $70/MWh, and strictly negative
(positive) for day-ahead prices lower (greater) than this value. Therefore, the optimal
offering curve prescribes to offer a zero quantity for $20 /MWh ≤ �D

< $70/MWh
and the nominal capacity for $70 /MWh < �D ≤ $80/MWh. For �D = $70/MWh,
any offer maximizes the expected revenues, as the expected value of the balancing
market price is equal to the price at the day-ahead stage.

Figure 7.6 illustrates the conditional expectation of the price difference and the
optimal offer curve for a unit with generation capacity equal to 200 MW.

Notice that if the expected day-ahead price is $50 /MWh, the expected value
of the balancing market price exceeds the former quantity by $5 /MWh, just like in
Example 7.2. However, bidding a zero quantity at any price in this case is suboptimal.

In the general case, the optimal bidding curve resulting from the pointwise calcu-
lation (7.32) may not fulfill the requirement that the supply curve be nondecreasing
in its domain. Indeed, it is easy to realize that the optimal bidding curve determined

in a pointwise fashion is not a supply curve whenever E

{̃
�

D − �̃
B|�D

}
switches in
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Fig. 7.6 Expected price difference between balancing and day-ahead markets, conditional on the
day-ahead price (a), and resulting optimal offering curve (b)

sign from strictly positive to strictly negative for some values of �D. The stochastic
programming framework can be used to determine the optimal offering curve in that
case. We refer the reader to Chap. 8, where a similar offering problem including
bidding curves is presented for a virtual power plant using stochastic programming.

7.4.2.2 Two-Price Market

The expected opportunity loss under the day-ahead price �D writes, by replacing the
probability density functions of the penalties in (7.27) by probability distributions
conditional on �D, as

EOL(�D) = −
∫ ED(�D

)

0
E
{
ψ̃UP|E, �D} [

E − ED(�D)
]
pẼ(E)dE

+
∫ E

ED(�D
)
E
{
ψ̃DW|E, �D} [

E − ED(�D)
]
pẼ(E)dE. (7.34)

By exploiting the fact that the imbalance penalties are uncorrelated with the stochastic
power production, we can bring the conditional expectations of the penalties out of
the integral operator

EOL(�D) = − E
{
ψ̃UP|�D} ∫ ED(�D

)

0

[
E − ED(�D)

]
pẼ(E)dE

+ E
{
ψ̃DW|�D} ∫ E

ED(�D
)

[
E − ED(�D)

]
pẼ(E)dE. (7.35)

Requiring that the first order derivative of the imbalance cost in (7.35) be equal to 0
yields the following expression for the optimal bidding curve

ED∗
(�D) = F−1

Ẽ

(
E
{
ψ̃DW|�D}

E
{
ψ̃UP|�D}+ E

{
ψ̃DW|�D}

)
. (7.36)
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Fig. 7.7 Expected balancing prices, conditional on the day-ahead price (a), and resulting optimal
offering curve (b)

As in the one-price market case, we remark that the optimal curve resulting from the
pointwise calculation of the optimal quantities in (7.36) does not necessarily yield a
valid nondecreasing supply curve in the general case.

Example 7.5 (Optimal bidding curve in a two-price settlement) Let us once again
consider that the stochastic power production is uniformly distributed between
100 MWh and 150 MWh. The expectations of the up-regulation and down-regulation
penalties, conditional on the realization of the day-ahead price, are affine functions
of the latter quantity, defined as follows

E
{
ψ̃UP|�D} =19 − 1

5
�D, (7.37)

E
{
ψ̃DW|�D} = − 1 + 1

10
�D

. (7.38)

The expected up-regulation and down-regulation prices at the balancing market are
shown in Fig. 7.7(a) as functions of the day-ahead price.

It is worth to notice that E
{
ψ̃UP|�D} and E

{
ψ̃DW|�D} are a decreasing and an

increasing function of �D, respectively. According to (7.36), and due to the zero
correlation between power production and day-ahead price, the optimal bidding
curve for the producer is given by

ED∗
(�D) = F−1

Ẽ

(
−1 + 1

10�D

19 − 1
5�D − 1 + 1

10�D

)
= F−1

Ẽ

(
−1 + 1

10�D

18 − 1
10�D

)
. (7.39)

The resulting optimal bidding curve is shown in Fig. 7.7(b). It is assumed that the

support of the distribution of the day-ahead price �̃
D

is included in the interval
between $20 /MWh and $80/MWh.

We point out that, since the argument of the quantile function in (7.39) is an
increasing function of the day-ahead price, it results that the optimal bidding curve
is a valid offer (i.e., nondecreasing) at the day-ahead market.



224 7 Trading Stochastic Production in Electricity Pools
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distribution and its relative
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To conclude the example, we notice that, if the distribution of the day-ahead
price λ̃D has mean $50/MWh, the expected values ψ̂UP, ψ̂DW of the up-regulation
and down-regulation penalties are $9/MWh and $4/MWh, respectively, as in
Example 7.3. The fixed quantity offer, though, is suboptimal in this case.

7.5 Modeling Risk-Aversion

When the power producer is not risk-neutral, a different objective than the maxi-
mization of the expected profit is sought. Generally speaking, a suitable objective
function for a risk-averse power producer penalizes the lowest profit, i.e., the tail on
the left-hand side of the profit distribution.

Two metrics widely used to quantify risk are the Value at Risk (VaR) and the
Conditional Value at Risk (CVaR). For a confidence level 0 ≤ α < 1, VaR1−α is the
(1 − α)-quantile of the profit. Denoting the (uncertain) profit with ρ̃ and the support
of its distribution with R, VaR1−α(ρ̃) is defined as

VaR1−α(ρ̃) = max {ρ ∈ R : P (ρ̃ < ρ) ≤ 1 − α} . (7.40)

The definition of CVaR1−α is related to the previous definition [16]. For continuously
distributed profits, it is the expected value of the profits that are lower than or equal
to VaR1−α:

CVaR1−α(ρ̃) = E {ρ̃|ρ̃ ≤ VaR1−α(ρ̃)} = 1

1 − α

∫ VaR1−α (ρ̃)

0
ρpρ̃(ρ)dρ, (7.41)

where pρ̃( · ) is the probability density function of the profit. According to this defi-
nition, CVaR often goes under the name of expected shortfall. Appendix C includes
further details on these two risk measures and valid definitions in the case of discretely
distributed profits.

In the recent years, CVaR has gained increasing attention, partly due to the fact
that, differently fromVaR, CVaR satisfies some properties that make it a coherent risk
measure [1]. Figure 7.8 shows VaR and CVaR for an example of profit distribution.
The dashed area in the illustration measures 1 −α. VaR is the (1 −α)-quantile of the
profit, while CVaR is the expected value of the profits falling below VaR.
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An intuitive approach when defining a risk-averse strategy consists in seeking a
compromise between the maximization of the expected profit and a term accounting
for the chosen risk metric. Employing CVaR at the α confidence level, a suitable
objective function z is

z = (1 − k)E {ρ̃} + k × CVaR1−α(ρ̃). (7.42)

For k = 0, the objective function consists in the maximization of the expected profit,
which corresponds to the risk-neutral case. For increasing values of k, the second
term in the objective function weighs more and more, implying that the maximization
of the worst outcomes has more and more importance. When k = 1, the decision
is completely risk-averse. It is worth noticing that the objective defined in (7.42)
depends on two parameters arbitrarily set by the decision-maker: α and k.

An alternative approach for a risk-averse decision-maker is the direct maximiza-
tion of the CVaR, i.e.,

z = CVaR1−α(ρ̃). (7.43)

Setting α = 0 yields the risk-neutral case; increasing values of α represent situations
with higher aversion to risk.

In the next section, we consider the short-term trading problem of a risk-averse
stochastic power producer employing the objective function (7.43).

7.5.1 Risk-Averse Strategy in a Two-Price Market

A relevant application of the risk criteria described above in the trading problem for
stochastic power producers is the case of a two-price settlement for the balancing
market with deterministic penalties. In this case, the only risk is introduced by the
uncertainty in power production.

We make the further assumption that market prices are always nonnegative. In this
situation, it holds that the higher the realized power production, the higher the profit.
If objective (7.43) is employed, the α fraction of highest returns corresponds to the
α fraction of highest production, which is therefore discarded from the objective
function. Taking into account the expression of the producer’s returns (7.10), the
expectation of the 1 − α lowest profits is given by

z =
∫ E1−α

0
�D

E
pẼ(E)

1 − α
dE +

∫ ED

0
ψUP

(
E − ED

) pẼ(E)

1 − α
dE

−
∫ E1−α

ED
ψDW

(
E − ED

) pẼ(E)

1 − α
dE,

(7.44)

where E1−α is the (1 − α)-quantile of the power production distribution, i.e., it
satisfies P{Ẽ ≤ E1−α} = 1 − α. Observe that in Eq. (7.44), it is assumed that the
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Fig. 7.9 Optimal day-ahead
bid for a risk-averse power
producer as a function of the
risk-aversion parameter α

0 0.1 0.2 0.3 0.4 0.5
100

110

120

130

140

150

α
E

D t
[M

W
h]

*

optimal value of the day-ahead offer ED is not greater than the quantile E1−α , which
makes sense for small values of α.

Proceeding in a similar way as in Sect. 7.3.2, the stationary point must satisfy

1

1 − α
ψUPFẼ(ED) + 1

1 − α
ψDW

(
FẼ(ED) − (1 − α)

) = 0, (7.45)

which readily yields the optimal risk-averse bid

ED∗ = F−1
Ẽ

{
(1 − α)

ψDW

ψUP + ψDW

}
. (7.46)

The result (7.46) is rather intuitive. Indeed, since the rightmost part of the power
production distribution is discarded from the objective function (7.44), the risk-
averse power producer is more concerned about negative (deficit) deviations from
the day-ahead position. The coefficient 1−α in the argument of the quantile function
in (7.46) scales the optimal quantile, reducing the quantity placed at the day-ahead
market and therefore decreasing the possibility and the size of power deficits at the
balancing market.

Example 7.6 (Risk-averse offering strategy in a two-price market) We consider the
same market penalties and the same distribution of power production as in Exam-
ple 7.1. From (7.46) and the cdf (7.19) it follows that the optimal day-ahead bid for
the risk-averse power producer is

ED∗ = 100 + 50 × 4

13
× (1 − α) MWh. (7.47)

Figure 7.9 shows the optimal quantity bid as a function of the risk-aversion parameter
α. For α = 0, the bid is the same as in the risk-neutral case, while it decreases for
higher values of the parameter.

The expected value and the CVaR5% of the profit (i.e., the expectation of the
5% lowest profits), obtained with the day-ahead price �D = $20/MWh, are shown
in Fig. 7.10. The expected profit in Fig. 7.10(a) decreases as α grows, signaling
that risk-averse strategies achieve worse financial results in expectation than the
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Fig. 7.10 Expected profit (a) and CVaR5% of the profit (b) as functions of the risk-aversion para-
meter α

risk-neutral strategy. In turn, the CVaR5% of the profit, shown in Fig. 7.10(b),
increases, which implies that high values of α better hedge the power producer.

Notice that such a direct application of risk management to the case of a one-
price market with deterministic prices is not particularly interesting. Indeed, a price-
inelastic zero offer maximizes CVaR1−α(ρ̃) for any α when �B

> �D. Similarly,
nominal capacity is still the optimal risk-averse offer if �B

< �D for any level of risk
aversion.

The risk-averse strategy presented in this section, due to the use of deterministic
prices, is only aimed at hedging the power generator from the uncertainty in power
production. In practice, when imbalance penalties are stochastic, the risk stemming
from both prices and production should be considered. The determination of the
optimal risk-averse strategy would then involve double integrals with possibly joint
probability distributions. Obviously, such calculations can be rather cumbersome.
As we shall see in Sect. 7.6, stochastic programming can be used to account for risk
in a simple and intuitive manner.

Before turning to the stochastic programming approach, we summarize the
analytical results obtained so far in Table 7.1.

7.6 Bidding Strategies: Stochastic Programming Approach

The existence of an analytical solution to the short-term trading problem of a stochas-
tic producer is limited to a number of simplified cases, all relying on at least one
of the assumptions stated in Sect. 7.2 of this chapter. Such a solution is thus no
longer available as soon as the dependence structure exhibited by market prices and
production volume becomes more intricate and/or the trading problem is enriched
with new elements and features.

In this section, we present an alternative approach to solving the trading problem
of a stochastic producer. This approach is based on stochastic programming, which
provides us with a powerful and flexible modeling framework to easily account for all
the relevant factors in this problem. The stochastic programming approach starts from
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Table 7.1 Summary of the analytical results

Case Market Optimal offer Offering rule

Deterministic prices 1-price

{
0 if �B

> �D

E if �B
< �D fixed quantity to be

offered at any
day-ahead price �D

2-price F−1
Ẽ

(
ψDW

ψUP + ψDW

)

Stochastic prices, no
penalties/day-ahead
price correlation

1-price

⎧⎪⎪⎨
⎪⎪⎩

0 if E

{
�̃

D − �̃
B
}

< 0

E if E

{
�̃

D − �̃
B
}

> 0
fixed quantity to be
offered at any
day-ahead price �D

2-price F−1
Ẽ

(
E
{
ψ̃DW

}
E
{
ψ̃UP

}+ E
{
ψ̃DW

}
)

Stochastic prices,
nonzero
penalties/day-ahead
price correlation

1-price

⎧⎪⎪⎨
⎪⎪⎩

0 if E

{
�̃

D − �̃
B|�D

}
< 0

E if E

{
�̃

D − �̃
B|�D

}
> 0

price-quantity curve;
valid only if
nondecreasing

2-price F−1
Ẽ

⎛
⎝ E

{
ψ̃DW|�D

}

E

{
ψ̃UP|�D

}
+ E

{
ψ̃DW|�D

}
⎞
⎠

Deterministic prices,
risk-averse

1-price

{
0 if �B

> �D

E if �B
< �D fixed quantity to be

offered at any
day-ahead price �D

2-price F−1
Ẽ

(
(1 − α)

ψDW

ψUP + ψDW

)

the premise that the uncertain parameters influencing the decision-making process
faced by the stochastic producer can be efficiently approximated by a finite set Ω of
plausible outcomes or scenarios.

For example, consider the random variable Ẽ describing the uncertain production
in a future time period and let Eω denote the realization of this random variable under
scenario ω. The set {(Eω, πω), ω ∈ Ω}, such that

∑
ω∈Ω πω = 1 and πω ≥ 0 for all

ω, is a discrete approximation of the probability distribution of Ẽ, with πω being the
probability of occurrence assigned to realization Eω. Similarly, one might construct a
scenario set {(Eω, ψUP

ω , ψDW
ω , πω), ω ∈ Ω} to model, if needed, the interdependence

structure between the uncertain production volume Ẽ and the imbalance penalties
ψ̃UP and ψ̃DW. Be that as it may, the stochastic programming approach to the trading
problem assumes that this scenario set is available. Chapter 2 provides the concepts
and tools required to properly construct scenarios for the stochastic processes of
interest within the scope of this book.

Next, we illustrate the stochastic programming approach to the offering problem
of a stochastic producer using a small example. For a brief introduction to stochastic
programming, we refer the interested reader to Appendix C.

Example 7.7 (Stochastic programming approach) Let us try to solve Example 7.1
using the concept of scenario. Recall that the imbalance penalties, ψUP and ψDW
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are considered here deterministic and equal to $9/MWh and $4/MWh, respectively.
Besides, the stochastic power production at trading period t , i.e., Ẽ, is given by a
uniform distribution between 100 MWh and 150 MWh.

The stochastic programming solution approach requires that this uniform distri-
bution be approximated by NΩ scenarios, i.e., Ẽ ≈ {(E1, π1), . . . , (Eω, πω), . . . ,
(ENΩ

, πNΩ
)}, with

∑NΩ
ω=1 πω = 1 and πω ≥ 0. By means of this discretization, the

offering problem of the stochastic producer can be cast as the linear programming
problem (7.48), which can be readily processed by optimization solvers.

Min.

NΩ∑
ω=1

πω

(−ψUPEUP
ω + ψDWEDW

ω

)
(7.48a)

s.t. 0 ≤ ED ≤ E, (7.48b)

Eω − ED = EUP
ω + EDW

ω , ∀ω, (7.48c)

EUP
ω ≤ 0, EDW

ω ≥ 0, ∀ω. (7.48d)

Variables ED, EUP
ω , and EDW

ω , for all ω, are the decisions to be optimized. In stochastic
programming terminology, the amount of energy sold by the stochastic producer
in the day-ahead market, ED, is referred to as a here-and-now decision variable,
because it must be decided before knowing the eventual realization of the stochastic
production Ẽ. Consequently, ED is independent of the scenario index ω. On the
other hand, the amounts of up-regulation and down-regulation energy acquired by
the stochastic producer in the balancing market, i.e., EUP

ω and EDW
ω are called wait-

and-see decision variables, because they are decided after knowing the specific
realization Eω of the stochastic production Ẽ. Therefore, EUP

ω and EDW
ω do depend

on the scenario index ω.
It should be noticed that the objective function (7.48a) is the equivalent scenario-

based formulation of the expected opportunity loss as expressed in (7.14). Analo-
gously, Eq. (7.48c) is the scenario-based definition of the imbalance of the stochastic
producer, also stated in (7.9) in a more general form.

Needless to say, the solution to the stochastic programming problem (7.48) is
strongly dependent on the scenario set that we use to approximate the uniformly
distributed power output Ẽ. In a first attempt, we can just consider a set of one
single scenario consisting in the expected power production, i.e., Ê = E{Ẽ} =
(100 + 150)/2 = 125 MWh, with a probability of 1. In such a case, problem (7.48)
becomes

Min. − 9EUP
1 + 4EDW

1 (7.49a)

s.t. 0 ≤ ED ≤ 150, (7.49b)

125 − ED = EUP
1 + EDW

1 , (7.49c)

EUP
1 ≤ 0, EDW

1 ≥ 0, (7.49d)

whose solution is trivial. Indeed, the minimum of (7.49) is attained at ED∗ = 125
MWh, which zeroes the objective function (7.49a). However, we know from
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Example 7.1 that the actual optimal strategy is to offer 115.38 MWh in the day-ahead
market. Obviously, the difference is caused by the scenario-based representation of
the stochastic power production.

In order to enhance the accuracy of the stochastic programming solution approach,
we can clearly build a better scenario set. For instance, we can approximate the
uncertain power output Ẽ this time using a two-scenario model that contains the
two extremes of the associated uniform distribution with the same probability, i.e.,
Ẽ ≈ {(E1, π1), (E2, π2)} = {(100 MWh, 0.5), (150 MWh, 0.5)}. Thus the stochastic
programming problem (7.48) becomes

Min. 0.5
(−9EUP

1 + 4EDW
1

)+ 0.5
(−9EUP

2 + 4EDW
2

)
(7.50a)

s.t. 0 ≤ ED ≤ 150, (7.50b)

100 − ED = EUP
1 + EDW

1 , (7.50c)

150 − ED = EUP
2 + EDW

2 , (7.50d)

EUP
1 , EUP

2 ≤ 0, EDW
1 , EDW

2 ≥ 0, (7.50e)

which results in ED∗ = 100 MWh, still far from the actual optimal bid of
115.38 MWh. We can further increase the size of the scenario set by adding the
expected power production Ê to the previous two-scenario model. That is, we ap-
proximate Ẽ by {(100 MWh, 1/3), (125 MWh, 1/3), (150 MWh, 1/3)}, which leads
to the following stochastic programming problem:

Min.
1

3

(−9EUP
1 + 4EDW

1

)+ 1

3

(−9EUP
2 + 4EDW

2

)+ 1

3

(−9EUP
3 + 4EDW

3

)
(7.51a)

s.t. 0 ≤ ED ≤ 150, (7.51b)

100 − ED = EUP
1 + EDW

1 , (7.51c)

125 − ED = EUP
2 + EDW

2 , (7.51d)

150 − ED = EUP
3 + EDW

3 , (7.51e)

EUP
1 , EUP

2 , EUP
3 ≤ 0, EDW

1 , EDW
2 , EDW

3 ≥ 0. (7.51f)

However, problem (7.51) also yields ED∗ = 100 MWh.
Finally, we construct a set of N +1 equiprobable scenarios uniformly spaced over

the interval [100, 150] MWh, i.e., we model the stochastic production Ẽ by {(E1, π1),
. . . , (Eω, πω), . . . , (EN+1, πN+1)}, where Eω = 100 + (ω − 1)(150 − 100)/N and
πω = 1/(N + 1), for all ω = 1, . . . , N + 1. Figure 7.11 illustrates the optimal
offer ED∗ given by the stochastic programming problem (7.48) as a function of N .
Observe that as the size of the scenario set increases, the stochastic programming
solution converges to the optimal bid that was obtained analytically in Example 7.1,
namely 115.38 MWh.

In short, the reliance of the stochastic programming solution approach on the
scenario set used to model the uncertain parameters is both its greatest virtue and its
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Fig. 7.11 Energy offer ED∗ (in megawatt-hour) obtained from the stochastic linear programming
problem (7.48) as a function of the size of the scenario set that approximates the uniformly distributed
power production Ẽ. Note that this offer approaches the analytical solution (115.38 MWh) as N

increases

Achilles’ heel. On the one hand, the scenario-based formulation of the trading prob-
lem allows us to determine the optimal offering strategy of the stochastic producer
by means of an equivalent (deterministic) optimization problem that can be directly
tackled by conventional optimization solvers. On the other, the actual value of the
solution provided by this optimization problem becomes strongly contingent on the
quality of the scenario set. This may render the stochastic solution approach com-
putationally prohibitive if, for example, the quality of the scenario set is conditional
on its size.

What is certain, though, is that the stochastic programming solution approach
allows us to easily consider other facets of the trading problem. For instance, it
is straightforward to determine risk-averse offering strategies using the conditional
value at risk within a stochastic programming framework. In the following, we build
on Example 7.7 to illustrate how to manage risk in the trading problem of a stochastic
producer using stochastic programming.

Example 7.8 (Risk management via stochastic programming) Problem (7.48) in
Example 7.7 determines the optimal offering strategy of a risk-neutral stochastic
producer. We can now extend this problem to account for risk-averse behavior as
follows:

Max. (1 − k)
∑
ω∈Ω

πωρω + k

(
ζ − 1

1 − α

∑
ω∈Ω

πωηω

)
(7.52a)

s.t. 0 ≤ ED ≤ E, (7.52b)

ρω = �D
Eω − (−ψUPEUP

ω + ψDWEDW
ω

) ∀ω, (7.52c)

Eω − ED = EUP
ω + EDW

ω , ∀ω, (7.52d)

ζ − ρω ≤ ηω, ∀ω, (7.52e)

EUP
ω ≤ 0, EDW

ω ≥ 0, ηω ≥ 0 ∀ω, (7.52f)
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where, for simplicity, we have omitted the time subscript t . Note that, as opposed
to (7.48a), the new objective function (7.52a) is formulated in terms of profits, not
opportunity costs. Accordingly, the newly defined variable ρω represents the profit
made by the stochastic producer in scenario ω, as stated by (7.52c), where variable ρω

is computed scenario-wise as the profit with perfect information minus the opportu-
nity cost. At the optimum, the term

(
ζ ∗ − 1

1−α

∑
ω∈Ω πωη∗

ω

)
in the objective function

coincides with the conditional value at risk at confidence level α (CVaR1−α), which
here represents the average value of the 1 − α cases with lowest profits. Variables
ζ and ηω are auxiliary. For further details on how to model the conditional value at
risk within a stochastic programming optimization problem, we refer the reader to
Appendix C.

Note that the objective function (7.52a) establishes the tradeoff between the ex-
pected value and the conditional value at risk of the profit distribution. This tradeoff
is resolved by means of the user-defined constant k ∈ [0, 1], which is usually re-
ferred to as risk-aversion parameter. The higher the value of k, the more risk averse
the stochastic producer is, as it becomes more concerned with the maximization of
the lowest profits. As seen later, the multi-objective form of (7.52a) permits us to
introduce the concept of efficient frontier in a very intuitive manner.

Now we assume the same imbalance penalties and the same distribution of power
production as in Example 7.7. Likewise, we approximate such a distribution using a
set of 1000 scenarios, built as explained in that example. We consider the conditional
value at risk at a confidence level α of 95%, i.e., CVaR5%, which accounts for the
5% of scenarios with lowest profits. The day-ahead market price �D is assumed to
be equal to $20/MWh.

Figure 7.12(a) shows the optimal energy offer ED∗ in the day-ahead market as
a function of the risk-aversion parameter k. Observe that higher values of k lead
to lower values of ED. Under risk aversion, poorer outcomes are weighted more
than good outcomes. In the trading problem of a stochastic producer with positive
prices, the cases with the lowest profits correspond to the scenarios in which the
stochastic producer is short and therefore, must purchase its generation deficit in the
balancing market. Figure 7.12(b) represents the so-called efficient frontier, which
is made up of the optimal pairs (CVaR5%, ρ̂) for different degrees of risk aversion.
True to form, the stochastic producer can reduce its risk exposure—by increasing k

in problem (7.52)—at the expense of decreasing the expected monetary value of its
optimal sale offer in the day-ahead market.

The stochastic programming approach to the trading problem of a stochastic
producer becomes particularly attractive in those instances for which an analytical
solution is not available. This occurs, for example, in the case where the stochastic
producer has the opportunity to participate in one or several adjustment markets. Gen-
erally speaking, these markets allow consumers and producers to adapt their forward
consumption or production schedule to unplanned eventualities such as equipment
failures, technical constraints, or sudden changes in load. For this reason, adjust-
ment markets are placed in between the clearing of the day-ahead and balancing
markets. Since the magnitude of the forecast error of stochastic production is usu-
ally strongly dependent on the lead time—the forecasts of wind/solar power issued
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Fig. 7.12 The optimal amount of energy to be sold in the day-ahead market by the stochastic pro-
ducer decreases as the degree of risk aversion increases (a). Offering strategies aimed at increasing
the profit associated with the least favorable production outcomes are possible at the expense of
decreasing the expected profit (b)

one hour ahead tend to be much more accurate than the forecast issued, e.g., 40 h
ahead—stochastic producers may largely benefit from adjustment markets as they
can trade in these markets with a lower degree of uncertainty on their eventual power
production. In practice, this means that the future stochastic production is known
better in the adjustments markets than in the day-ahead market. In the following
example, we illustrate how to deal with an adjustment market in the trading problem
of a stochastic producer by means of stochastic programming.

Example 7.9 (Adjustment market) Let us consider a stochastic producer that partic-
ipates in an electricity market with the structure and time framework represented
in Fig. 7.13. The day-ahead market is cleared at time tD. After the closure of the
day-ahead market, bidding in the adjustment market is allowed until Δt time units
prior to the energy delivery period t . In the balancing market, the energy deviations
incurred by the stochastic producer during the delivery period t are determined with
respect to the dispatch program agreed in the day-ahead and adjustment markets, and
priced accordingly.

Suppose that the day-ahead and adjustment market prices, i.e., �D and�A, are equal
to $20/MWh and $19/MWh, respectively. Besides, the imbalance penalties, ψUP

and ψDW, are $9/MWh and $4/MWh in that order, which means that the balancing
market prices for upward and downward regulation, i.e., �UP and �DW, are given by
�UP = �D + ψUP = $29/MWh and �DW = �D − ψDW = $16/MWh.

The stochastic producer owns a 100-MW wind farm whose power output in time
period t can be described as follows:

• The amount of energy Et−Δt produced by the wind farm in time period t −Δt may
be high (60 MWh) with a probability of 0.4 or low (30 MWh) with a probability
of 0.6.
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Fig. 7.13 Market
organization and time
framework including
day-ahead, adjustment and
balancing markets

• If the wind power production Et−Δt is high (60 MWh), the amount of energy E

produced during the delivery period t may be extremely high (100 MWh) with a
probability of 0.75 or relatively high (50 MWh) with a probability of 0.25.

• If the wind power production Et−Δt is low (30 MWh), the amount of energy E

produced during the delivery period t may be extremely low (0 MWh) or relatively
low (40 MWh), both with a probability of 0.5.

The sequence of stages and decisions that the stochastic producer has to face is
described below.

1. Decide the amount of energy ED to be sold in the day-ahead market with inac-
curate information on the eventual power output of its wind farm in the delivery
period t .

2. Decide the amount of energy EA to be traded in the adjustment market. At this
stage, the energy produced by its wind farm in time period t − Δt is known
and this information improves the stochastic producer’s knowledge of its power
production in the delivery period t .

3. Lastly, once the wind power production in the delivery period t becomes known,
the stochastic producer must cover the amount of energy deviating from that
scheduled in the day-ahead and adjustment markets by selling or purchasing its
generation surplus or shortage, respectively, in the balancing market.

The decision-making process faced by the stochastic producer can be represented in
the form of a tree, as depicted in Fig. 7.14. Each scenario ω in the tree is characterized
by a certain wind power outcome in time periods t − Δt and t , i.e., Et−Δtω and Eω,
with πω being its probability of occurrence. The scenario tree is made up of three sets
of nodes corresponding to the three stages of the stochastic producer decision-making
process. Each stage represents the trading in a different market.

For comparison purposes, let us first suppose that the stochastic producer ignores
the adjustment market. In this case, its optimal energy offer in the day-ahead market
is obtained as the solution to the opportunity loss minimization problem (7.48) stated
in Example 7.7, that is

Min. 0.3
(−9EUP

1 + 4EDW
1

)+ 0.1
(−9EUP

2 + 4EDW
2

)+ (7.53a)

0.3
(−9EUP

3 + 4EDW
3

)+ 0.3
(−9EUP

4 + 4EDW
4

)
(7.53b)
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Fig. 7.14 Scenario tree describing the three-stage decision-making process faced by the stochastic
producer. The nodes represent points in time where trading decisions are to be made. The branches
represent the realization of wind power

s.t. 0 ≤ ED ≤ 150, (7.53c)

100 − ED = EUP
1 + EDW

1 , (7.53d)

50 − ED = EUP
2 + EDW

2 , (7.53e)

40 − ED = EUP
3 + EDW

3 , (7.53f)

0 − ED = EUP
4 + EDW

4 , (7.53g)

EUP
1 , EUP

2 , EUP
3 , EUP

4 ≤ 0, EDW
1 , EDW

2 , EDW
3 , EDW

4 ≥ 0, (7.53h)

which yields ED∗ = 40 MWh. The expected opportunity loss (EOL) associated with
this bid is $184. Therefore, the expected profit ρ̂ made by the stochastic producer
can be calculated as ρ̂ = �D∑4

ω=1 πωEω −EOL = $20/MWh×47MWh−$184 =
$756.

Let us now consider that the stochastic producer trades in the adjustment market
as well. In this case, the best strategy the stochastic producer can adopt is given by
the following expected profit maximization problem,

Max. �D
ED +

NΩ∑
ω=1

πω

(
�A

EA
ω + �UP

EUP
ω + �DW

EDW
ω

)
(7.54a)

s.t. 0 ≤ ED ≤ E, (7.54b)

0 ≤ ED + EA
ω ≤ E, ∀ω, (7.54c)

Eω − ED − EA
ω = EUP

ω + EDW
ω , ∀ω, (7.54d)

EA
1 = EA

2 , EA
3 = EA

4 , (7.54e)

EUP
ω ≤ 0, EDW

ω ≥ 0, ∀ω, (7.54f)
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where EA
ω is the amount of energy sold, if positive, or purchased, if negative, in

the adjustment market by the stochastic producer. The objective function (7.54a)
to be maximized is the expected profit, which includes three terms: (i) the profit
made in the day-ahead market, �D

ED; (ii) the expected profit obtained in the ad-
justment market, �A∑NΩ

ω=1 πωEA
ω; and the expected profit made in the balancing

market,
∑NΩ

ω=1 πω

(
�UP

EUP
ω + �DW

EDW
ω

)
. Note that the last two terms referring to the

adjustment and balancing markets may actually represent a cost in those scenarios
where the stochastic producer purchases electricity from these markets. Logically,
the energy deviations incurred by the stochastic producer are to be computed here
with respect to the forward production program resulting from the day-ahead and
adjustment markets, as stated by the set of constraints (7.54d). Equations (7.54e)
enforce the nonanticipatory character of the information, which requires the amount
of energy traded in the adjustment market be unique irrespective of the wind pro-
duction outcome in the future delivery period t . However, the energy offer in the
adjustment market may be indeed conditional on the wind power produced in time
period t − Δt . In stochastic programming, constraints of the nature of (7.54e) are
usually called nonanticipativity constraints.

By replacing parameters in optimization problem (7.54) with their actual values,
we end up with the following optimization problem,

Max. 20ED + 0.3
(
19EA

1 + 29EUP
1 + 16EDW

1

)+
0.1
(
19EA

2 + 29EUP
2 + 16EDW

2

)+ 0.3
(
19EA

3 + 29EUP
3 + 16EDW

3

)
(7.55a)

0.3
(
19EA

4 + 29EUP
4 + 16EDW

4

)
s.t. 0 ≤ ED ≤ 100, (7.55b)

0 ≤ ED + EA
1 ≤ 100, (7.55c)

0 ≤ ED + EA
2 ≤ 100, (7.55d)

0 ≤ ED + EA
3 ≤ 100, (7.55e)

0 ≤ ED + EA
4 ≤ 100, (7.55f)

100 − ED − EA
1 = EUP

1 + EDW
1 , (7.55g)

50 − ED − EA
2 = EUP

2 + EDW
2 , (7.55h)

40 − ED − EA
3 = EUP

3 + EDW
3 , (7.55i)

0 − ED − EA
4 = EUP

4 + EDW
4 , (7.55j)

EA
1 = EA

2 , EA
3 = EA

4 , (7.55k)

EUP
1 , EUP

2 , EUP
3 , EUP

4 ≤ 0, EDW
1 , EDW

2 , EDW
3 , EDW

4 ≥ 0, (7.55l)

which results in ED∗ = 100 MWh, EA
1

∗ = EA
2

∗ = −50 MWh, EA
3

∗ = EA
4

∗ =
−100 MWh, and ρ̂ = $912. This trading strategy, therefore, entails an increase in
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the expected profit equal to $912 − $756 = $156—a 20.64% increment in relative
terms—with respect to the expected profit associated with the offering strategy de-
rived from problem (7.53), which ignores the adjustment market. This increase is
partly due to the fact that the future wind power production in the delivery period
t is known with higher accuracy in the adjustment market. Indeed, from the day-
ahead market, the stochastic producer foresees a future energy generation in period t

ranging from 0 to 100 MWh. In contrast, from the adjustment market, the stochastic
producer forecasts an energy production varying either from 50 to 100 MWh or from
0 to 40 MWh depending on whether the wind energy produced in time period t −Δt ,
i.e., Et−Δt , is high (60 MWh) or low (30 MWh). This way, if Et−Δt is high, the
stochastic producer purchases 50 MWh in the adjustment market, while if it is low,
its energy purchase in this market is increased up to 100 MWh.

In short, the fact that the clearing of the adjustment market is closer in time to the
energy delivery period enhances the profitability of the stochastic producer. Indeed,
if the pair of constraints (7.54e) is replaced with the single equation EA

1 = EA
2 =

EA
3 = EA

4 , in order to disregard this effect, the expected profit made by the stochastic
producer drops to $852, which represents a 6.6% decrease with regard to the expected
profit resulting from problem (7.54).

In reality, the electricity prices in the day-ahead and adjustment markets are also
uncertain. Furthermore, since the trading volume in adjustments markets is generally
lower than in the day-ahead market, the electricity price in adjustment markets is
often more volatile. As a result, the stochastic producer must face a tradeoff between
selling in the day-ahead market at less volatile prices and trading in the adjustment
market with a reduced level of uncertainty about its future energy production. This
tradeoff can be resolved by means of the stochastic programming solution approach
presented in this section.

7.7 Summary and Conclusions

Renewable energy producers are increasingly required to participate in electricity
markets under the same rules as conventional power producers. However, the com-
petitive sale of renewable energy by stochastic producers is cursed with the weather
dependency of the underlying energy source, e.g., sunlight or wind. Stochastic pro-
ducers are thus forced to channel part of their business into the balancing market,
where they can take part with perfect knowledge of their production.

Compared to the electricity prices in markets with early gate closures, such as day-
ahead and adjustment markets, balancing market prices are generally less predictable
and/or less competitive. Consequently, as the stochastic producer becomes more and
more dependent on the balancing market, its profitability may rapidly deteriorate.
Therefore, the stochastic producer must smartly decide its involvement in day-ahead,
adjustment, and balancing markets according to its best guess on market prices and
future power production.
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The trading problem of a stochastic producer is described in this chapter as a
multi-stage decision-making problem under uncertainty. We identify the assump-
tions that render this problem analytically solvable and provide the corresponding
exact solutions. For those cases in which these assumptions prove to be unrealistic,
simplistic or too constraining, a more general modeling approach based on stochastic
programming and the concept of scenarios is introduced to determine the best trading
strategy for the stochastic producer.

7.8 Further Reading

For a basic introduction to statistical decision theory, the reader is referred to [14].
From the same author, [15] offers a more complete treatment of the subject, including
the newsvendor problem, which is the general formulation of the power trading
problem.

Further reading on analytical results on the trading problem for stochastic power
producers consists mainly of research articles focusing on the case of wind power
producers. The optimal strategy based on the offer of a quantile of the wind power
distribution is proposed and tested in [4; 12; 17]. Further analytical results including
and extending part of the results presented in this chapter can be found in [3; 6].
Finally, [8] provides a general discussion, including an application to electricity
markets, on the relationship between loss functions and the optimal forecasts.

On the other hand, the short-term trading problem of a wind power producer is
tackled in [10; 11; 13] using stochastic programming. Reference [5] also describes a
number of trading models for retailers, consumers and producers (including nondis-
patchable agents) that are built upon stochastic programming, and provides insight
into risk management and the scenario-based modeling of the uncertainties affecting
trading decisions.

The trading problem for price-maker producers employing renewable sources
with variable and stochastic nature is considered in [2; 18], making use of stochastic
Mathematical Programs with Equilibrium Constraints.

Exercises

7.1 A forecaster predicts that the energy production Ẽ of a wind farm during a given
trading period t is characterized by the following probability density function pẼ( · ):

pẼ(E) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

E − 100

625
, 100 ≤ E < 125,

150 − E

625
, 125 ≤ E < 150,

0, elsewhere.

(7.56)
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1. Determine the cumulative distribution function FẼ( ·) for wind power production.
2. Assume that the imbalance penalties in a two-price market are ψUP = $9 /MWh

and ψDW = $4/MWh. Determine the optimal offer and the resulting expectation
of the imbalance cost.

3. Now determine the optimal offer and the resulting expectation of the imbalance
cost assuming that the imbalance penalties are ψUP = $4/MWh and ψDW =
$9/MWh.

7.2 Consider the definition of ũ in Example 7.2. Let us assume that the probability
density function for ũ is

pũ(u) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u + 20

625
, −20 ≤ u < 5,

30 − u

625
, 5 ≤ u < 30,

0, elsewhere.

(7.57)

1. Determine the expected value of the balancing price in a one-price market. If the
forecast for wind power production is the same as in Exercise 7.1, what is the
optimal offer?

2. Determine the expected values of the imbalance penalties ψ̂UP and ψ̂DW in a
two-price market. If the forecast for wind power production is the same as in
Exercise 7.1, what is the optimal offer?

7.3 In a two-price market, the expectation of the imbalance penalties, conditional on
the day-ahead price, is given by the following.

E
{
ψ̃UP|�D} =10 − 1

10
�D, (7.58)

E
{
ψ̃DW|�D} =1

8
�D

. (7.59)

Let us consider a uniform distribution for the stochastic production with lower and
upper bounds equal to 100 MWh and 150 MWh, respectively. Determine the optimal
offering curve, assuming that the day-ahead price is nonnegative and can take values
up to $100/MWh.

7.4 Consider the distribution of wind power production in Exercise 7.1, and the deter-
ministic penalties ψUP = $9/MWh and ψDW = $4/MWh. Determine the risk-averse
bid with parameter α = 0.2. Assuming a day-ahead price �D = $50/MWh, deter-
mine the expected value of the profit, the value at risk (VaR5%) and the conditional
value at risk (CVaR5%) of the profit.

7.5 Suppose that the energy production of a certain wind farm in a given trading
period t can be modeled by a uniform distribution between 0 MWh and 50 MWh.

1. Construct a set of four equiprobable and uniformly spaced scenarios that
approximates this uniform distribution.

2. Based on this scenario set and knowing that the imbalance penalties, ψUP and
ψDW, are deterministic and equal to $3/MWh and $6/MWh, respectively, for-



240 7 Trading Stochastic Production in Electricity Pools

mulate and solve a stochastic programming model to calculate the energy offer
in the day-ahead market that minimizes the expected imbalance cost of the wind
farm.

7.6 Reformulate the stochastic programming model of the previous exercise to
account for the risk aversion of the wind power producer using the Conditional
Value-at-Risk of its profit distribution at a confidence level of 99%. Then, obtain the
optimal bid of the wind power producer in the day-ahead market as a function of a
risk-aversion parameter and draw the resulting efficient frontier.

7.7 Consider a solar power producer that participates in an electricity market with
the structure and time framework depicted in Fig. 7.13 of Example 7.9. The solar
producer owns a 50-MW photovoltaic power plant whose energy output in time
period t is stochastic and can be described as follows:

• The amount of energy Et−Δt produced by the solar power plant in time period
t − Δt may be high (45 MWh) with a probability of 0.7 or low (5 MWh) with a
probability of 0.3.

• If the solar power production Et−Δt is high (45 MWh), the amount of energy E

produced during the delivery period t may be extremely high (50 MWh) with a
probability of 0.35 or relatively high (41 MWh) with a probability of 0.65.

• If the solar power production Et−Δt is low (5 MWh), the amount of energy E

produced during the delivery period t may be extremely low (0 MWh) with a
probability of 0.70 or relatively low (10 MWh) with a probability of 0.30.

Furthermore, the day-ahead and adjustment market prices, i.e., �D and �A, are known
to be equal to $45/MWh and $46/MWh, respectively, and the imbalance penalties,
ψUP and ψDW, equal to $10/MWh and $8/MWh, in that order.

1. Construct a scenario tree similar to that in Fig. 7.14 of Example 7.9 to describe
the decision-making process faced by the solar power producer.

2. Compute the optimal bid of the solar power producer in the day-ahead market if
the adjustment market is disregarded.

3. Compute the optimal bid of the solar power producer in the day-ahead market if
the adjustment market is taken into account and calculate how much the expected
profit of the solar power producer increases with respect to the previous case.
Determine also how much of this increase is due to the fact that the future energy
production of the photovoltaic power plant in period t is known with higher
accuracy in the adjustment market than in the day-ahead market.

7.8 Consider a 60-MW solar power plant whose power output in a given trading
period t can be either 35 and 60 MW, with probabilities 0.6 and 0.4, respectively. It
is known that:

• The price in the day-ahead market for period t can be either $25/MWh or
$50/MWh, with probabilities 0.3 and 0.7, in that order.

• If the day-ahead market price is equal to $25/MWh, the imbalance penal-
ties for upward and downward balancing energy are $10 /MWh and $2/MWh,
respectively.
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• In contrast, if the day-ahead market price is equal to $50/MWh, these imbalance
penalties take on the values $5/MWh and $4/MWh instead.

Use the information about offering curves provided in Sect. 8.4 of Chap. 8 (see, in
particular, Example 8.9 in this chapter) to formulate and solve a stochastic program-
ming model that computes, as an increasing function of the day-ahead electricity
price, the optimal energy offer in the day-ahead market that maximizes the expected
profit of the solar power producer.

Based on the comments and explanations in Sect. 7.4.2, justify the obtained
solution.

7.9 Repeat Exercise 7.8 for the case that:

• If the day-ahead market price is $25/MWh, the imbalance penalties for upward
and downward balancing energy are $5 /MWh and $4/MWh, respectively.

• If the day-ahead market price is equal to $50/MWh, the imbalance penalties are
$10/MWh and $2/MWh instead.

7.10 Try to solve Exercises 7.8 and 7.9 analytically. Can both problems be solved
this way? If not, motivate why.
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