
Chapter 3
Clearing the Day-Ahead Market with a High
Penetration of Stochastic Production

3.1 Electricity Markets: Day-Ahead Market

Electricity markets are trading floors that allow electricity producers, on the one
hand, and electricity consumers and retailers, on the other hand, to trade electricity.

Two trading floor categories are available depending on the immediacy of the
trading: long-term trading (from 1 week to 1 year ahead of energy delivery), which
takes place through futures markets and via private bilateral contracts; and short-
term trading (from several minutes to 1 day ahead of energy delivery), which takes
place through the electricity pool.

Futures markets allow the arrangement of long-term electricity trading through
forward contracts and options.

A forward contract involves the trading of a prespecified amount of power during
a future time period, e.g., 10 MW during the next week. A forward contract involves
a seller that produces the energy sold and a buyer that consumes such energy.

An option associated with a forward contract provides the buyer of the option with
the possibility of deciding at some future time whether to implement the forward
contract. Buying an option involves a payment from the buyer of the option.

For instance, a producer may buy an option to sell 10 MW during 3 days in 2-week
time to be decided in 1-week time, and pays for such an option a fee to the consumer
willing to provide the buying flexibility required by the option.

Conversely, a consumer may acquire an option to buy 10 MW during 3 days in
2-week time to be decided in 1-week time, and pays for such an option a fee to the
producer willing to provide the selling flexibility required by the option.

The electricity pool allows short-term trading and generally involves two trading
arrangements, the day-ahead market and the balancing market.

The day-ahead market takes place the day prior to energy delivery, typically around
noon. Producers submit to this market production offers (consisting of production
quantities and minimum selling prices), while consumers and retailers submit con-
sumption bids (consisting of consumption quantities and maximum buying prices).
In turn, the market operator clears the market using a market-clearing tool that is
generally an auction. This auction results in scheduled production and consumption
levels and day-ahead market-clearing prices.
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The balancing market takes place several minutes before energy delivery and
constitutes the last market mechanism to balance production and consumption. This
market is particularly relevant for stochastic producers (e.g., wind and solar power
producers) that cannot accurately predict their production levels prior to the closing
of the day-ahead market. The balancing market is cleared by the market operator in
a similar fashion as the day-ahead market through an auction. Its outcome involves
production and consumption adjustments and balancing clearing prices.

Some electricity pools include intermediate market arrangements between the
day-ahead and the balancing markets, intended to further hedge against uncertainty
and to allow corrective actions in response to unexpected events and errors by market
agents. These trading arrangements are generally called adjustment or intra-day
markets.

This chapter focuses on the day-ahead market and provides clearing models par-
ticularly suited for markets including a significant number of stochastic producers.
More specifically, the remainder of this chapter is structured as follows. Section 3.2
first introduces the concept of reserve capacity as a market commodity to cope with
uncertainty in power systems, then briefly describes basic models for the dispatch
of energy and reserve in electricity markets, and finally presents the market-clearing
mechanism based on two-stage stochastic programming with recourse. Subsequently,
Sect. 3.3 uses this two-stage stochastic programming model to derive consistent clear-
ing prices for an energy-only market settlement. Alternatively to two-stage stochastic
programming, Sect. 3.4 introduces a dispatch method for energy and reserve capacity
that is built on adaptive robust optimization. Section 3.5 summarizes the chapter, and
Sect. 3.6 provides a collection of selected readings on the topic. Finally, proofs related
to some properties of the resulting stochastic and robust market-clearing procedures
are provided in appendices at the end of the chapter.

It is worth mentioning that this chapter places emphasis on advanced methods
for clearing electricity markets with a high penetration of stochastic generation. It
is therefore highly recommended for the reader unfamiliar with the functioning of
these markets to first learn the basics from more introductory manuals such as [6]
and [16].

3.2 Clearing the Day-Ahead Market Under Uncertainty

Electricity markets for short-term energy transactions usually comprise, at least, two
different trading stages in the form of a day-ahead energy exchange and a balancing
market. The day-ahead energy exchange takes place 1 day in advance and settles
contracts for the delivery of energy on an hourly basis. The balancing market serves
to competitively settle the energy adjustments required to ensure the constant balance
between electricity supply and demand.

The coexistence of both markets is well-justified. On the one hand, the day-
ahead market is useful for those power plants that need advance planning in order
to efficiently and reliably adjust their production levels. If major changes in the
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overall supply were left to be driven by the balancing market, some generating
units would be limited or just unable to respond to market signals. On the other
hand, if market participants were able to perfectly predict with enough lead time
the amount of energy that they will produce or consume, there would be no need
for taking balancing actions. However, there are always imbalances in practice,
especially in power systems with a high penetration of stochastic production. The
balancing market constitutes thus a competitive mechanism to efficiently cope with
these energy imbalances by allowing flexible firms to adjust their day-ahead positions.
No doubt that the balancing market is, therefore, of primary importance for stochastic
producers given the limited predictability of their power production.

This chapter focuses on the day-ahead market, while Chap. 4 focuses on the
balancing market.

3.2.1 Cooptimizing Energy and Reserve Capacity

In order to ensure that enough balancing resources are available during the real-time
operation of the power system, the system operator allocates reserve capacity in
advance. In practice, the procurement and scheduling of reserve capacity implies
operating the system at less than its full capacity, while its use or deployment usually
translates into the redispatch of units previously committed in the day-ahead market,
the voluntary curtailment of loads, and/or the quick start-up of extra power plants to
cover unexpected shortages of energy supply in real time.

There exist two schools of thought on how reserve should be traded in electricity
markets. On the one hand, reserve capacity may be sequentially procured in a series of
auctions run once the day-ahead energy dispatch has been determined. These auctions
are organized to procure reserves with different activation times. The rationale behind
this approach is that the free capacity that has not been successfully placed in one
market can then be offered in the following auctions where the required activation
time for the traded reserve is not as demanding. Consequently, reserve capacity offers
that are successful in one market are not considered in the subsequent ones.

On the other hand, energy and reserve may be simultaneously procured in the
same auction using a co-optimization algorithm that captures the strong coupling
between the supply of energy and the provision of reserve capacity. The following
illustrative example serves to get a more intuitive understanding of this coupling.

Example 3.1 (Cooptimization of Energy and Reserve) Consider an electricity market
that solely includes two power producers, A and B. Each of these producers runs a
power plant with a capacity of 100 MW. ProducerA offers to sell energy at $10/MWh,
while producer B does it at $30/MWh. A demand of 130 MWh is to be supplied.

Additionally, with the aim of dealing with unforseen events, the system operator
estimates that 20 MW of reserve capacity are required. Producer A is willing to
provide reserve at no cost, whereas producer B offers reserve capacity at $25/MW.
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To start with, let us suppose that energy and reserve capacity are sequentially
settled in this order. Thus, the energy-only dispatch is first determined as follows:

Min. 10PA + 30PB (3.1a)

s.t. PA + PB = 130, (3.1b)

0 ≤ PA ≤ 100, (3.1c)

0 ≤ PB ≤ 100, (3.1d)

where PA and PB are the amounts of energy sold by producers A and B, respectively.
Optimization problem (3.1) is trivial, and its solution is given by P ∗

A = 100 MWh
and P ∗

B = 30 MWh. The clearing (marginal) price for energy, which is defined as
the dual variable of constraint (3.1b), results in $30/MWh.

Once the energy dispatch is determined, the reserve capacity market is cleared as
follows:

Min. 0RA + 25RB (3.2a)

s.t. RA + RB = 20, (3.2b)

0 ≤ RA ≤ 100 − P ∗
A, (3.2c)

0 ≤ RB ≤ 100 − P ∗
B, (3.2d)

where RA and RB are the amounts of reserve capacity sold by producers A and B,
respectively. Note that the reserve scheduling takes the energy dispatch

{
P ∗

A, P ∗
B

}
as input. The solution to problem (3.2) is also trivial and is given by R∗

A = 0 and
R∗

B = 20MW. That is, since producer A has been dispatched at full capacity in the
energy market, reserve needs are entirely covered by producer B. Thus, the total
system operation costs TCseq, including both the procurement costs of energy and
reserve capacity, are computed as

TCseq = 10P ∗
A + 30P ∗

B + 0R∗
A + 25R∗

B

= 10 × 100 + 30 × 30 + 0 + 25 × 20 = $2400. (3.3)

The clearing (marginal) price for reserve capacity is $25/MW, which is the value
taken by the dual variable associated with the reserve requirement constraint (3.2b).
Therefore, the profits made by producers A and B, respectively, under the sequential
market organization are calculated as follows:

Profitseq
A = (30 − 10)P ∗

A + (25 − 0)R∗
A = 20 × 100 + 25 × 0 = $2000, (3.4a)

Profitseq
B = (30 − 30)P ∗

B + (25 − 25)R∗
B = 0. (3.4b)

Let us now consider that energy and reserve capacity are simultaneously traded
in the same auction. To this end, both commodities are jointly dispatched using
optimization problem (3.5) below, which minimizes the total system operation costs.
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Min. 10PA + 30PB + 0RA + 25RB (3.5a)

s.t. PA + PB = 130, (3.5b)

RA + RB = 20, (3.5c)

PA + RA ≤ 100, PA ≥ 0, RA ≥ 0, (3.5d)

PB + RB ≤ 100, PB ≥ 0, RB ≥ 0. (3.5e)

The solution to this problem is P ∗
A = 80 MWh, R∗

A = 20 MW, P ∗
B = 50 MWh, and

R∗
B = 0 MW. The total system operation costs in this case (TCsim) are calculated as

TCsim = 10P ∗
A + 30P ∗

B + 0R∗
A + 25R∗

B (3.6)

= 10 × 80 + 30 × 50 + 0 × 20 + 25 × 0 = $2300.

Prices for energy and reserve capacity, defined as the dual variables of constraints
(3.5b) and (3.5c), respectively, are $30/MWh and $20/MW in that order. Therefore,
the profits made by producers A and B under the simultaneous market clearing of
energy and reserve are given by

profitsim
A = (30 − 10)P ∗

A + (20 − 0)R∗
A = 20 × 80 + 20 × 20 = $2000, (3.7a)

profitsim
B = (30 − 30)P ∗

B + (20 − 25)R∗
B = 0 × 50 − 5 × 0 = 0, (3.7b)

which turn out to be the same as the profits made by both producers in the sequential
setup. However, the simultaneous dispatch of energy and reserve captures the cou-
pling existing between these two commodities, thus reducing the total costs by $100.
Actually, in this illustrative example, the interaction between energy and reserve is
inferred from the following results:

1. Producer A cannot sell as much energy as it might do otherwise. Indeed, this
producer is committed to producing 80 MWh of energy, so that it can provide its
spare capacity (20 MW) as reserve. Reserve requirements are thus satisfied.

2. On the contrary, producer B, which runs a more expensive power plant, has to
produce more energy in order to meet the electricity demand.

3. The price for reserve capacity in the simultaneous arrangement ($20/MW) does
not correspond to any of the reserve offer costs submitted by the producers. It is,
in fact, given by the difference between the marginal energy costs of producer B
($30/MWh) andA ($10/MWh). This is so because a 1-MW increase of the reserve
needs in constraint (3.5c) is covered by producer A. To this end, this producer
must decrease its energy production by 1 MWh, while producer B must increase
it by the same amount. This action does not involve any additional reserve cost,
but increases the cost of the energy dispatch by $20.
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3.2.2 Reserve Requirements

In developed countries, electricity has become a necessity of everyday life, an asset
essential for the functioning of society and economy. Being deprived of electricity
may be thus extremely costly and troublesome for many consumers. Therefore,
determining the amount of reserve capacity necessary to ensure a secure and efficient
balancing operation in real time is paramount. Furthermore, the reserve determination
must comply with market principles, i.e., the procurement cost of reserve should
match the value it provides to power system users.

When estimating reserve capacity needs, two different approaches, namely de-
terministic or probabilistic, can be adopted. The deterministic approach often relies
on rule-of-thumb criteria such as procuring enough reserve capacity to cover the
loss of the largest generating unit (the so-called N − 1 security criterion), or to sup-
ply a percentage of the hourly demand, or even a combination of these two. These
standards, nevertheless, ignore the stochastic nature of the factors that call for bal-
ancing energy, and consequently, reserve requirements are estimated independent
of the magnitude of the uncertainties affecting the power system and their impact
on system operation costs. On the other hand, in the probabilistic approach, reserve
needs are determined based on a probabilistic description of these uncertainties. This
approach, therefore, exploits concepts and methods from stochastic process theory,
such as those presented in Appendix A of this book, to quantify the optimal amount
of reserve capacity to be procured from a market perspective.

A natural way to compute reserve needs using a probabilistic approach is by means
of the expected load not served (ELNS). The ELNS is a stochastic security metric
that represents the average amount of energy not supplied as a result of load-shedding
actions. It is cast as a weighted average energy value that accounts for the probability
of uncertain factors and the damage that these factors cause to the system in the form
of involuntarily curtailed load. Moreover, the ELNS can be expressed linearly, and
hence, easily included within a market-clearing problem. Indeed, as illustrated in the
example below, the ELNS allows determining reserve requirements endogenously,
i.e., as a byproduct of the dispatch problem itself.

Example 3.2 (Estimating Reserve Requirements) Consider again the electricity mar-
ket described in Example 3.1. Recall that this market is a duopoly made up of
producers A and B, in which reserve requirements are estimated by the system op-
erator at 20 MW. The reason for this estimate is that the electricity demand may
increase from 130 MWh to 150 MWh without prior notice, and the system opera-
tor decides to protect the electrical infrastructure against this unexpected growth of
consumption by scheduling 20 MW of reserve capacity in advance. The probability
of this happening is, though, relatively small, specifically 0.05.

Let us now rethink this problem using a probabilistic approach. For this purpose,
note that, in response to a sudden increase of load, three different balancing actions
may be taken, namely:
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1. ProducerA may increase its production fromPA toPA+rA. The energy increase rA

is obtained from the reserve capacity RA scheduled beforehand for this producer.
2. Similarly, producer B may increase its production from PB to PB +rB. The energy

increase rB results from deploying the reserve capacity RB dispatched beforehand
for this producer.

3. A part of the load increase, Lshed, may be simply not supplied. This action,
however, entails huge economic losses, which are estimated at $1000/MWh.

Based on these three possible balancing measures, the energy-reserve dispatch
problem can be reformulated as follows:

Min. 10PA + 30PB + 0RA + 25RB + 0.05
(
10rA + 30rB + 1000 Lshed

)
(3.8a)

s.t. rA + rB + Lshed = 20, (3.8b)

rA ≤ RA, (3.8c)

rB ≤ RB, (3.8d)

PA + RA ≤ 100, (3.8e)

PB + RB ≤ 100, (3.8f)

Lshed ≤ 20, (3.8g)

PA, PB, RA, RB, rA, rB, Lshed ≥ 0. (3.8h)

The solution to this problem is P ∗
A = 80 MWh, R∗

A = 20 MW, P ∗
B = 50 MWh,

R∗
B = 0 MW, r∗

A = 20 MWh, r∗
B = 0, and Lshed∗ = 0. Therefore, the energy and

reserve capacity dispatches, i.e.,
{
P ∗

A, P ∗
B

}
and

{
R∗

A, R∗
B

}
, respectively, obtained from

problem (3.8) are the same as those resulting from problem (3.5) in Example 3.1.
This is just pure coincidence. Actually, dispatch models (3.5) and (3.8) are essentially
different inasmuch as the following:

1. Market-clearing problem (3.8) takes into account explicitly both the probability of
occurrence of the 20-MWh demand increase and its potential impact on system
operation costs through the utilization of balancing resources. Indeed, the ex-
pression 0.05

(
10rA + 30rB + 1000 Lshed

)
in (3.8a) represents the expected cost

incurred at the balancing stage. This cost component is, in contrast, ignored in
dispatch model (3.5).

2. The reserve dispatch yielded by market-clearing model (3.8) is directly deter-
mined based on how valuable this reserve is to consumers by including the cost
of the expected load not served in objective function (3.8a), where this cost ap-
pears as 0.05 × 1000 × Lshed. For the particular instance solved above, this cost
is equal to zero, meaning that consumers are willing to pay for 20 MW of re-
serve capacity that can be deployed to satisfy a potential consumption increase,
if needed. In contrast, if the probability of occurrence of the 20-MWh demand
growth is small enough, say 0.005, or the value of lost load is sufficiently low,
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e.g., $100/MWh, no reserve capacity is dispatched, i.e.,
{
R∗

A, R∗
B

} = {0, 0}, and
the whole demand increase is shed instead (Lshed∗ = 20 MWh), if it comes to it.

3. While the 20-MW reserve requirement enters dispatch model (3.5) as an input in
constraint (3.5c), reserve needs are an outcome of market-clearing model (3.8).
In fact, there is no reserve requirement constraint in this problem. Instead, we
enforce constraint (3.8b), in which all the variables involved, namely rA, rB,
and Lshed, represent balancing energy quantities. But if there is no such reserve
requirement constraint, how do we determine the reserve capacity price? We will
get to the answer of this question in due time.

3.2.3 A Two-Stage Stochastic Programming Approach

One of the main functions of the system operator is to ensure that enough reserve
capacity is scheduled in advance so that a sufficient level of balancing resources are
available in real time to cope with system uncertainties. In Example 3.1, we came to
the conclusion that system operation costs are minimized if energy and reserve capac-
ity are simultaneously dispatched in the day-ahead market, as the supply of energy
and the provision of reserve capacity are complementary services. Subsequently, in
Example 3.2, we showed that, by including the expectation of the balancing costs
in the objective function of the dispatch problem, reserve needs are determined as
a byproduct of the clearing process itself. This way, the amount of reserve capacity
that is scheduled matches the value it provides to system users. Besides, the direct
connection between reserve and system uncertainties bestows a probabilistic sense
on this value.

The market-clearing model (3.8) in Example 3.2 is, in fact, a two-stage
stochastic programming model, in which the here-and-now decisions make up the
energy-reserve dispatch and the wait-and-see decisions correspond to the real-time
operation. The reader is referred to Appendix C for a brief introduction to stochastic
programming.

The objective function in (3.8) aims at minimizing the so-called expected system
operation costs, which include both the cost related to the day-ahead energy-reserve
dispatch and the expected cost of the anticipated balancing actions to be taken during
the real-time operation of the power system. These costs are computed based on the
energy and reserve capacity offers submitted by market participants to the day-ahead
market.

This objective function is subject to three different sets of constraints, namely,
the constraints involving energy and reserve capacity variables in the day-ahead
dispatch; the equations constraining the utilization of balancing resources, some of
which may involve day-ahead decision variables; and the constraints declaring the
non-negative nature of energy- and reserve-related variables.

A generalization of such a market-clearing model is outlined below.
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Minimize Day-ahead dispatch cost + Expected balancing cost

subject to

1

2

3

• Day-ahead market constraints:4

– Power balance equations at the day-ahead stage5

– Reserve capacity determination constraints6

– Bounds of reserve and energy offers7

• Operation constraints:8

– Power balance equations at the balancing stage9

– Network constraints10

– Deployed reserve determination constraints11

• Declarations of non-negative variables12

This approach, based on a two-stage stochastic programming model, naturally
describes the interaction between the day-ahead and the real-time operation. In
particular, the economic performance of the day-ahead energy-reserve dispatch is
improved by implicitly accounting for its projected impact on the subsequent bal-
ancing costs. This way, enough flexible capacity is made available for balancing to
efficiently cope with uncertain factors. The following illustrative example highlights
the main features of this approach.

Example 3.3 (A Two-Stage Stochastic Programming Approach) Consider the two-
node system in Fig. 3.1.

This small system includes three thermal units, two loads, and a 50-MW wind farm
placed at bus 1. The single transmission line in the system has a per-unit reactance
of 0.13. For a given time period in the future, the system operator must determine
here-and-now both the energy dispatch and the reserve capacity needs. Naturally,
reserve capacity is required to cope with the uncertain wind power production, which
is represented via two scenarios, namely high (50 MW) and low (10 MW), with
probability 0.6 and 0.4, respectively. Specifically, the sequence of decisions that the
system operator has to face is as follows:

1. Determine the production levels of thermal units and the quantity and allocation
of reserves to deal with the uncertain wind power production.

2. Deploy reserves in the form of balancing energy during the real-time operation of
the power system to accommodate the actual realization of wind power produc-
tion. Four different types of balancing actions can be undertaken for this purpose,
namely:
a) The power output of thermal unit i can be increased from Pi to Pi +rU

i , where
rU
i is the balancing energy obtained from the upward reserve capacity of unit

i, denoted as RU
i . This action entails a cost given by Cir

U
i , where Ci is the

marginal production cost declared by unit i.
b) Conversely, the power output of unit i can be decreased from Pi to Pi −

rD
i , where rD

i is the balancing energy resulting from the deployment of the
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Fig. 3.1 Two-bus system

Bus 1

Load 1
(40 MW)

Unit 1 Unit 2 Wind
Farm

High: (50 MW,0.6)

Low: (10 MW,0.4)

Bus 2

Load 2
(100 MW)Unit 3

100 MW

{
downward reserve capacity of unit i, represented by RD

i . This action implies
cost savings of Cir

D
i .

c) A part of the wind power production, W spill, can be curtailed (spilled). This
action is cost free, as long as the marginal cost of wind energy production is
considered to be zero.

d) A part of the load j , Lshed
j , can be also curtailed. This action involves, though,

the so-called value of lost load, V LOL
j , which is estimated for this small example

at $200/MWh.

These balancing actions may be taken in either of the two wind power scenarios
considered. Subscripts h and l are used to indicate to which scenario, high or low,
respectively, each balancing action refers to. For example, W

spill
h is the amount of

wind power production that is curtailed in scenario high.
The market-clearing process is driven by the minimization of the expected sys-

tem operation cost, which is made up of the energy-reserve dispatch costs plus the
expected cost involved in the balancing actions. These costs are computed from the
energy and reserve offers submitted by market agents to the electricity market. In
this illustrative example, we assume that each thermal unit offers a single block of
energy and up- and down-reserve capacity at prices C, CRU, and CRD, respectively.
The value of these offer prices are shown in Table 3.1 together with the maximum
power output, P max, of every unit i. These units are assumed to be fully dispatchable
between 0 and P max.

Objective Function: The expected system operation cost (EC) is calculated as

EC = 10P1 + 30P2 + 35P3︸ ︷︷ ︸
Day-ahead energy costs

+ 16RU
1 + 15RD

1 + 13RU
2 + 12RD

2 + 10RU
3 + 9RD

3︸ ︷︷ ︸
Reserve capacity costs︸ ︷︷ ︸

Day-ahead dispatch costs

+ 0.6
[
10
(
rU

1h − rD
1h

)+ 30
(
rU

2h − rD
2h

)+ 35
(
rU

3h − rD
3h

)+ 200
(
Lshed

1h + Lshed
2h

)]
︸ ︷︷ ︸

Balancing costs in scenario high

+ 0.4
[
10
(
rU

1l − rD
1l

)+ 30
(
rU

2l − rD
2l

)+ 35
(
rU

3l − rD
3l

)+ 200
(
Lshed

1l + Lshed
2l

)]
.︸ ︷︷ ︸

Balancing costs in scenario low
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Table 3.1 Unit data Unit i 1 2 3

P max (MW) 50 110 100
C ($/MWh) 10 30 35
CRU ($/MW) 16 13 10
CRD ($/MW) 15 12 9

Day-Ahead Market Constraints: The day-ahead energy dispatch must satisfy the
power balance equations, i.e.,

P1 + P2 + W S − 40 = (δ0
1 − δ0

2)

0.13
(bus 1),

P3 − 100 = (δ0
2 − δ0

1)

0.13
(bus 2),

where W S is the amount of wind power production scheduled in the day-ahead
market. We define bus 1 as the reference node by setting δ0

1 to 0. The power flow
resulting from the day-ahead energy dispatch must satisfy the transmission capacity
limits, i.e.,

(δ0
1 − δ0

2)

0.13
≤ 100, (3.9a)

(δ0
2 − δ0

1)

0.13
≤ 100. (3.9b)

Furthermore, energy and reserve capacity are mutually exclusive. Therefore, it
holds

P1 + RU
1 ≤ 50, (3.10a)

P1 − RD
1 ≥ 0, (3.10b)

P2 + RU
2 ≤ 110, (3.10c)

P2 − RD
2 ≥ 0, (3.10d)

P3 + RU
3 ≤ 100, (3.10e)

P3 − RD
3 ≥ 0. (3.10f)

Operation Constraints: Now we focus on the balancing market stage. Needless to
say, balancing actions must ensure the real-time balance between supply and demand
under each possible scenario, i.e.,

rU
1h + rU

2h − rD
1h − rD

2h + Lshed
1h + 50 − W S − W

spill
h = (δ1h − δ0

1 + δ0
2 − δ2h)

0.13
(bus 1),
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rU
1l + rU

2l − rD
1l − rD

2l + Lshed
1l + 10 − W S − W

spill
l = (δ1l − δ0

1 + δ0
2 − δ2l)

0.13
(bus 1),

rU
3h − rD

3h + Lshed
2h = (δ2h − δ0

2 + δ0
1 − δ1h)

0.13
(bus 2),

rU
3l − rD

3l + Lshed
2l = (δ2l − δ0

2 + δ0
1 − δ1l)

0.13
(bus 2).

We also consider bus 1 as the reference node in the balancing stage by setting δ1h =
δ1l = 0. Due to the implementation of balancing actions, the power flowing between
buses 1 and 2 is altered. The new power flow must also satisfy the transmission
capacity limits. This is stated as follows:

(δ1h − δ2h)

0.13
≤ 100,

(δ2h − δ1h)

0.13
≤ 100 (scenario high),

(δ1l − δ2l)

0.13
≤ 100,

(δ2l − δ1l)

0.13
≤ 100 (scenario low).

Clearly, the amount of wind power production that is curtailed under each scenario
must be lower than or equal to the actual wind power output, i.e.,

W
spill
h ≤ 50 (scenario high),

W
spill
l ≤ 10 (scenario low).

Similarly, the amount of load that is shed in each scenario has to be lower than or
equal to the actual consumption value,

Lshed
1h ≤ 40, Lshed

1l ≤ 40 (load 1),

Lshed
2h ≤ 100, Lshed

2l ≤ 100 (load 2).

The balancing energy comes from the reserve capacity that has been previously
scheduled in the day-ahead market. Consequently, we have

rU
1h ≤ RU

1 , rD
1h ≤ RD

1 , rU
2h ≤ RU

2 , rD
2h ≤ RD

2 , rU
3h ≤ RU

3 , rD
3h ≤ RD

3 ,

rU
1l ≤ RU

1 , rD
1l ≤ RD

1 , rU
2l ≤ RU

2 , rD
2l ≤ RD

2 , rU
3l ≤ RU

3 , rD
3l ≤ RD

3 .

Declarations of Non-Negative Variables: Lastly, reserve, production, and consump-
tion quantities in both the day-ahead and balancing stages must be non-negative,

RU
1 , RU

2 , RU
3 , RD

1 , RD
2 , RD

3 , P1, P2, P3, W S ≥ 0 (day-ahead stage),

rU
1h, rU

2h, rU
3h, rD

1h, rD
2h, rD

3h, Lshed
1h , Lshed

2h , W spill
h ≥ 0 (balancing stage, scenario high),

rU
1l , r

U
2l , r

U
3l , r

D
1l , r

D
2l , r

D
3l , L

shed
1l , Lshed

2l , W spill
l ≥ 0 (balancing stage, scenario low).
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Complete Model Formulation: We compile below all these constraints to formulate
the two-stage stochastic programming problem to be solved.

Min. 10P1 + 30P2 + 35P3 + 16RU
1 + 15RD

1 + 13RU
2 + 12RD

2 + 10RU
3 + 9RD

3

+ 0.6
[
10
(
rU

1h − rD
1h

)+ 30
(
rU

2h − rD
2h

)+ 35
(
rU

3h − rD
3h

)+ 200
(
Lshed

1h + Lshed
2h

)]
+ 0.4

[
10
(
rU

1l − rD
1l

)+ 30
(
rU

2l − rD
2l

)+ 35
(
rU

3l − rD
3l

)+ 200
(
Lshed

1l + Lshed
2l

)]
(3.11a)

s.t. P1 + P2 + WS − 40 = (δ0
1 − δ0

2)

0.13
, (3.11b)

P3 − 100 = (δ0
2 − δ0

1)

0.13
, (3.11c)

(δ0
1 − δ0

2)

0.13
≤ 100, (3.11d)

(δ0
2 − δ0

1)

0.13
≤ 100, (3.11e)

P1 + RU
1 ≤ 50, (3.11f)

P1 − RD
1 ≥ 0, (3.11g)

P2 + RU
2 ≤ 110, (3.11h)

P2 − RD
2 ≥ 0, (3.11i)

P3 + RU
3 ≤ 100, (3.11j)

P3 − RD
3 ≥ 0, (3.11k)

rU
1h + rU

2h − rD
1h − rD

2h + Lshed
1h + 50 − W S − W

spill
h = (δ1h − δ0

1 + δ0
2 − δ2h)

0.13
,

(3.11l)

rU
1l + rU

2l − rD
1l − rD

2l + Lshed
1l + 10 − W S − W

spill
l = (δ1l − δ0

1 + δ0
2 − δ2l)

0.13
,

(3.11m)

rU
3h − rD

3h + Lshed
2h = (δ2h − δ0

2 + δ0
1 − δ1h)

0.13
, (3.11n)

rU
3l − rD

3l + Lshed
2l = (δ2l − δ0

2 + δ0
1 − δ1l)

0.13
, (3.11o)

(δ1h − δ2h)

0.13
≤ 100,

(δ2h − δ1h)

0.13
≤ 100, (3.11p)

(δ1l − δ2l)

0.13
≤ 100,

(δ2l − δ1l)

0.13
≤ 100, (3.11q)
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δ0
1 = 0, δ1l = 0, δ1h = 0, (3.11r)

rU
1h ≤ RU

1 , rD
1h ≤ RD

1 , rU
2h ≤ RU

2 , rD
2h ≤ RD

2 , rU
3h ≤ RU

3 , rD
3h ≤ RD

3 ,
(3.11s)

rU
1l ≤ RU

1 , rD
1l ≤ RD

1 , rU
2l ≤ RU

2 , rD
2l ≤ RD

2 , rU
3l ≤ RU

3 , rD
3l ≤ RD

3 , (3.11t)

W
spill
h ≤ 50, W

spill
l ≤ 10, (3.11u)

Lshed
1h ≤ 40, Lshed

1l ≤ 40, (3.11v)

Lshed
2h ≤ 100, Lshed

2l ≤ 100, (3.11w)

RU
1 , RU

2 , RU
3 , RD

1 , RD
2 , RD

3 , P1, P2, P3, W S ≥ 0, (3.11x)

rU
1h, rU

2h, rU
3h, rD

1h, rD
2h, rD

3h, Lshed
1h , Lshed

2h , W
spill
h ≥ 0, (3.11y)

rU
1l , rU

2l , rU
3l , rD

1l , rD
2l , rD

3l , Lshed
1l , Lshed

2l , W
spill
l ≥ 0. (3.11z)

We can use stochastic programming model (3.11) to assess the impact of the uncertain
wind power production on the expected value of the total system operation cost.
Table 3.2 includes a breakdown of this cost into energy production and reserve
capacity costs. For ease of comparison, Fig. 3.2 provides a graphical illustration of
this cost breakdown, which is calculated for four different cases, namely:

Case a) The future wind power production is perfectly known, and it coincides with
its expected value, given by 0.6 × 50MW + 0.4 × 10MW = 34MW.

Case b) The wind farm is removed from the system in Fig. 3.1. Therefore, loads are
exclusively supplied by the thermal units.

Case c) Wind power production is uncertain in keeping with the two-scenario rep-
resentation indicated in the beginning of this illustrative example. Results
in this case are directly obtained by solving optimization problem (3.11).

Case d) Wind power production is uncertain as in case (c), and the capacity of the
single transmission line in the system is reduced from 100 to 40 MW.

By comparing case (a) or (c) with case (b), it becomes clear that wind generation
leads to a significant reduction in the costs of energy production, since a substantial
portion of the electricity demand, which otherwise would be covered by thermal
generation, is satisfied by renewable and free energy instead. However, the expected
cost in case (a) is significantly smaller than in case (c). This difference is largely
driven by the cost of the reserve capacity required to cope with wind production
uncertainty. Case (d) highlights the key role played by the network in the integration
of stochastic production into power systems. If the capacity of the single line in the
system is not high enough to make the most of the wind energy produced at bus 1
in all scenarios, a part of the wind power production is likely to be wasted and the
two-bus power system will not fully benefit from the cost-free generation of the wind
farm.

We conclude this section by generalizing the two-stage stochastic programming
model introduced in the previous illustrative example. For this purpose, we define
the following sets and indices:
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Table 3.2 Breakdown of the expected cost in dollars for four different cases. a No wind generation
uncertainty. b No wind generation. c Uncertain wind generation. d Network congestion

Case a b c d

Energy 2180 3200 2260 2880
Reserve 0 0 360 180
Total 2180 3200 2620 3060

a) b) c) d)
0
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4000
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xp
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Energy
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Fig. 3.2 Illustration of the expected cost breakdown. a No wind generation uncertainty. b No wind
generation. c Uncertain wind generation. d Network congestion

I Set of conventional production units.
J Set of loads.
Q Set of stochastic production units.
N Set of buses.
Λ Set of transmission lines.
Ω Set of scenarios.
ΦI

n Set of conventional units located at bus n.
ΦJ

n Set of loads located at bus n.
ΦQ

n Set of stochastic production units located at bus n.
e(�) Receiving-end bus of line �.
o(�) Sending-end bus of line �.

In addition, we build the general formulation on the following assumptions:

A1 The day-ahead market is cleared using a single-period network-constrained auc-
tion. Therefore, inter-temporal constraints, such as ramping limits, are not
included in the problem formulation. Hourly periods are considered, and thus,
power and energy magnitudes, i.e., MW and MWh, are treated equivalently.

A2 A DC model is used to account for the transmission network; see [10].
A3 Electricity consumption is inelastic, with a large value of lost load. Thus, the max-

imization of the social welfare boils down to the minimization of the operating
costs.

A4 Supply cost functions are linear.
A5 The uncertainty affecting the market-clearing process is assumed to be solely

induced by stochastic producers.



72 3 Clearing the Day-Ahead Market with a High Penetration of Stochastic Production

A6 The uncertainty associated with the stochastic producers can be efficiently mod-
eled through a finite set of outcomes or scenarios {(Wqω, πω), ω = 1, . . . , and
card(Ω)}, where {πω, ∀ω ∈ Ω} are their associated probabilities of occurrence
and card( · ) is a function that gives the cardinality of a set.

A7 Conventional units are considered to be fully dispatchable from zero to their
maximum capacities.

Assumptions A1–A5 are mere simplifications for the purpose of rendering the subse-
quent model formulation easier to follow. Indeed, the day-ahead market model used
in the following two-stage stochastic programming formulation can be extended to a
multi-period setup that includes ramping constraints, a piecewise linear approxima-
tion of the supply cost functions, elastic demand, and other sources of uncertainty
such as equipment failures and/or demand uncertainty. We refer the interested reader
to Chap. 5 for further details on these extensions. AssumptionA6 is typical in stochas-
tic programming and is needed to cast the stochastic market-clearing formulation in
a form manageable by optimization solvers, while exploiting the scenario generation
tools presented in Chap. 2. Finally, assumption A7 will be actually needed in the fol-
lowing section, where we will use the two-stage stochastic programming model here
introduced to price electricity in spot markets under uncertainty. This assumption
allows us to sidestep the problem of pricing in markets with non-convexities, which
is out of the scope of this book. For further information on this specific problem, the
interested reader is referred to [13], [15] and references therein.

The two-stage stochastic programming model that results from the assumptions
above is formulated as follows:

Min.
Ξ

∑
i∈I

(
CiPi + CRU

i RU
i + CRD

i RD
i

)

+
∑
q∈Q

CqW
S
q +

∑
ω∈Ω

πω

[∑
i∈I

(
CU

i rU
iω − CD

i rD
iω

)

+
∑
q∈Q

Cq

(
Wqω − W S

q − W spill
qω

)+
∑
j∈J

V LOL
j Lshed

jω

⎤
⎦ (3.12a)

s.t.
∑
i∈ΦI

n

Pi +
∑

q∈ΦQ

n

W S
q −

∑
j∈ΦJ

n

Lj −
∑

�∈Λ|o(�)=n

b�

(
δ0
o(�) − δ0

e(�)

)

+
∑

�∈Λ|e(�)=n

b�

(
δ0
o(�) − δ0

e(�)

) = 0 : λD
n , ∀n ∈ N , (3.12b)

∑
i∈ΦI

n

(
rU
iω − rD

iω

)+
∑

j∈ΦJ

n

Lshed
jω +

∑
q∈ΦQ

n

(
Wqω − W S

q − W spill
qω

)

+
∑

�∈Λ|o(�)=n

b�

(
δ0
o(�) − δo(�)ω − δ0

e(�) + δe(�)ω
)
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−
∑

�∈Λ|e(�)=n

b�

(
δ0
o(�) − δo(�)ω − δ0

e(�) + δe(�)ω
) = 0 : γnω, ∀n ∈ N , ∀ω ∈ Ω,

(3.12c)

b�

(
δ0
o(�) − δ0

e(�)

) ≤ Cmax
� , ∀� ∈ Λ, (3.12d)

b�

(
δ0
e(�) − δ0

o(�)

) ≤ Cmax
� , ∀� ∈ Λ, (3.12e)

b�

(
δo(�)ω − δe(�)ω

) ≤ Cmax
� , ∀� ∈ Λ, ∀ω ∈ Ω, (3.12f)

b�

(
δe(�)ω − δo(�)ω

) ≤ Cmax
� , ∀� ∈ Λ, ∀ω ∈ Ω, (3.12g)

δ0
1 = 0, (3.12h)

δ1ω = 0, ∀ω ∈ Ω, (3.12i)

W S
q ≤ Wmax

q , ∀q ∈ Q, (3.12j)

Pi + RU
i ≤ P max

i , ∀i ∈ I , (3.12k)

Pi − RD
i ≥ 0, ∀i ∈ I , (3.12l)

RU
i ≤ R

U,max
i , ∀i ∈ I , (3.12m)

RD
i ≤ R

D,max
i , ∀i ∈ I , (3.12n)

rU
iω ≤ RU

i , ∀i ∈ I , ∀ω ∈ Ω, (3.12o)

rD
iω ≤ RD

i , ∀i ∈ I , ∀ω ∈ Ω, (3.12p)

Lshed
jω ≤ Lj , ∀j ∈ J , ∀ω ∈ Ω, (3.12q)

W spill
qω ≤ Wqω, ∀q ∈ Q, ∀ω ∈ Ω, (3.12r)

Pi , RU
i , RD

i ≥ 0 , ∀i ∈ I ; rU
iω , rD

iω ≥ 0 , ∀i ∈ I , ∀ω ∈ Ω; W S
q ≥ 0 , ∀q ∈ Q ,

W spill
qω ≥ 0, ∀q ∈ Q, ∀ω ∈ Ω; Lshed

jω ≥ 0, ∀j ∈ J , ∀ω ∈ Ω, (3.12s)

where Ξ = {Pi , RU
i , RD

i , rU
iω, rD

iω, W S
q , W

spill
qω , Lshed

jω , δ0
n, δnω, ∀i ∈ I , ∀q ∈ Q, ∀j ∈

J , ∀n ∈ N , ∀ω ∈ Ω} is the set of decision variables.
The objective function (3.12a) to be minimized is the sum of the day-ahead energy-

reserve dispatch cost and the expected balancing costs. We distinguish here between
the upward and downward reserve capacity costs, represented by CRU and CRD,
respectively. We also make a distinction between the cost of the energy sold by
conventional producers in the day-ahead market, denoted as C, and the costs of
increasing/reducing generation by these producers at balancing time, represented by
CU and CD in that order. Note that we have included the energy costs incurred by
stochastic producers, calculated as

∑
q∈Q

CqW
S
q +

∑
ω∈Ω

πω

∑
q∈Q

Cq

(
Wqω − W S

q − W spill
qω

)
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=
∑
ω∈Ω

πω

∑
q∈Q

Cq

(
Wqω − W spill

qω

)
.

Furthermore, since the term
∑

ω∈Ω πω

∑
q∈Q CqWqω is constant, it can be removed

from the objective function. Constraints (3.12b) and (3.12c) are power balance equa-
tions, with b� being the susceptance of line �. In particular, constraints (3.12b) enforce
the power balance on the day-ahead energy dispatch, while constraints (3.12c) do
so on the energy redispatch resulting from real-time balancing. The group of equa-
tions (3.12d)–(3.12g) enforces the transmission capacity limits. Equations (3.12h)
and (3.12i) set, without loss of generality, bus 1 as the reference node. Constraints
(3.12j) limit the power dispatched for each stochastic producer q to its capacity,
Wmax

q . Equations (3.12k) and (3.12l) model the physical coupling between energy
and reserve capacity. Constraints (3.12m) and (3.12n) restrict the amount of up-
ward and downward reserve capacity sold by each conventional producer i to its
reserve offer limits, RU,max and RD,max, respectively. The amount of additional en-
ergy that each conventional producer i produces for balancing in scenario ω, i.e.,
rU
iω, is obtained from its upward reserve capacity RU

i . This is stated by Eq. (3.12o).
Analogously, the amount of energy reduction that each conventional producer i im-
plements for balancing in each scenario ω, i.e., rD

iω, is obtained from its downward
reserve capacity RD

i . This is enforced through Eq. (3.12p). As already mentioned in
Example 3.3, constraints (3.12q) and (3.12r) are commonsense bounds according to
which the amount of load that is involuntarily shed and the amount of stochastic pro-
duction that is curtailed are smaller than or equal to the actual demand value and the
actual stochastic production, respectively. The set of constraints (3.12s) constitutes
non-negative variable declarations.

Lastly, we point out that the family of dual variables {λD
n , ∀n ∈ N} and {γnω, ∀n ∈

N , ∀ω ∈ Ω} associated with the power balance equations (3.12b) and (3.12c), respec-
tively, are explicitly indicated in optimization problem (3.12) after these equations,
separated by a colon, because these dual variables will play a fundamental role
in pricing electricity in spot markets that are cleared using a two-stage stochastic
programming approach. This is indeed the subject matter of the following section.

3.3 Pricing Energy in the Day-Ahead Market Under
Uncertainty

In the presence of a high penetration of stochastic production in electricity markets,
balancing costs may become strongly dependent on the day-ahead dispatch. If this
is such that insufficient flexible and competitive generation capacity is left to the
balancing market, managing uncertainties during the real-time operation of the power
system may become problematic and costly. The rationale behind the use of the
two-stage stochastic programming approach (3.12) is to explicitly account for the
potential impact of the day-ahead dispatch on the balancing operation with the aim
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of improving the overall system performance. The strong coupling between the day-
ahead and balancing market stages does not only manifest itself through the system
operation cost, but also through its dual counterpart: the electricity price.

In this section, we present a settlement scheme that supports the day-ahead dis-
patch given by the stochastic programming model (3.12) in an economic sense. In
other words, we define a set of prices that make market participants satisfied with
the day-ahead dispatch outcomes resulting from such a model.

3.3.1 Towards an Energy-Only Electricity Pricing

Reserve capacity is purchased by the system operator prior to balancing time to
guarantee that enough flexible generation will be available to deal with system un-
certainties in real time. In essence, the need for reserve capacity is actually a need
for balancing energy.

In those markets where energy and reserve capacity are traded as different com-
modities, the day-ahead energy dispatch is altered by the provision of reserve
capacity. This alteration is financially supported by reserve capacity payments (see,
for instance, [16; 17]). The dual variable associated with the constraint enforcing
the procurement of demand for reserve may serve as the reserve capacity price, as
we saw in Example 3.1. The demand for reserve is estimated by the system operator
based on the need for energy at the balancing stage.

The stochastic programming model (3.12) does not include, however, a reserve
requirement constraint. In this formulation, the day-ahead energy dispatch is deter-
mined by explicitly modeling the balancing operation as the second-stage or recourse
problem. For this purpose, optimization problem (3.12) exploits the information
submitted by market participants about their flexibility and willingness to supply
balancing energy. Reserve requirements can be computed ex post as a byproduct of
model (3.12), inasmuch as the provision of reserve boils down to pre-positioning
the system in a way that balancing energy can be traded as anticipated. There-
fore, in an electricity market cleared using the two-stage stochastic programming
approach (3.12), reserve capacity does not need to be a commodity anymore.

Optimization problem (3.12) does include, on the other hand, two different sets
of power balance equations, namely (3.12b) and (3.12c). The former are enforced
in the day-ahead market, while the latter are imposed on the energy deployed at the
balancing stage. The dual variables associated with these two group of constraints,
{λD

n , ∀n ∈ N} and {γnω, ∀n ∈ N , ∀ω ∈ Ω}, respectively, are particularly meaningful
from an economic point of view. Specifically,

λD
n accounts for the impact on the expected system operation costs of a marginal

increase in the forecast load at bus n. Therefore, to supply this foreseen marginal
increase in load, inflexible units can be used with advance planning;

γnω accounts for the impact on the expected system operation costs of a marginal
uncertain increase in the load at bus n under scenario ω. This marginal increase
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in load, for being uncertain, cannot be supplied by inflexible units, as they cannot
provide balancing energy. Besides, this impact is weighted by the probability
of occurrence πω of scenario ω.

Based on the economic interpretation of these dual variables, we build the following
settlement scheme:

1. Each conventional producer i located at bus n is paid for its day-ahead energy
dispatch Pi at a price λD

n .
2. Each consumer j located at bus n is charged for its scheduled energy consumption

Lj at a price λD
n .

3. Each stochastic producer q located at bus n is paid for its day-ahead dispatch W S
q

at a price λD
n .

4. Each conventional producer i located at bus n is paid for the additional energy
rU
iω required for balancing in scenario ω at a price γnω

πω
.

5. Each conventional producer i located at bus n is charged for the energy reduction
rD
iω required for balancing in scenario ω at a price γnω

πω
.

6. Each stochastic producer q located at bus n with production surplus in scenario
ω is paid for its excess of generation Wqω − W S

q − W
spill
qω at a price γnω

πω
.

7. Each stochastic producer q located at bus n with generation shortage in scenario
ω is charged for its production deficit W S

q + W
spill
qω − Wqω at a price γnω

πω
.

8. Each consumer j located at node n suffering from a load curtailment Lshed
jω in

scenario ω is compensated for this curtailment at a price γnω

πω
.

If we now define

s(k) Index of the bus where market participant k is located;
Ek Energy sold, if positive, or energy purchased, if negative, by market

participant k in the day-ahead market;
ΔEkω Additional energy sold, if positive, or repurchased, if negative, by market

participant k for balancing in scenario ω,

the previous settlement scheme can be concisely cast as

λD
s(k)Ek + λB

s(k)ωΔEkω, (3.13)

where λB
s(k)ω = γs(k)ω

πω
. In fact, λB

s(k)ω is a prediction of the balancing market price in
scenario ω and can be alternatively computed by solving the recourse stage of the
stochastic programming model (3.12) with the day-ahead dispatch variables fixed to
their optimal values, for the specific realization ω of the uncertain parameters.

Observe that the settlement scheme (3.13) is solely based on energy payments, and
consequently, it leads to what we call an energy-only electricity market. Under such a
market settlement, one may question the actual meaning of the reserve capacity costs∑

i∈I CRU
i RU

i + CRD
i RD

i included in the objective function (3.12a). In principle, the
provision of reserve capacity implies no extra cost to the electricity generation process
other than the cost of its actual deployment in the form of balancing energy, which
is already counted in (3.12a). Reserve capacity costs may be, nevertheless, justified
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Table 3.3 Two possible sets of market outcomes for the two-bus system in Fig. 3.1. Powers in MW

Unit Pi RU
i RD

i rU
iω rD

iω

High Low High Low

(a) Solution A (W S = 10) 1 50 0 0 0 0 0 0
2 80 0 40 0 0 40 0
3 0 0 0 0 0 0 0

(b) Solution B (W S = 50) 1 50 0 0 0 0 0 0
2 40 40 0 0 40 0 0
3 0 0 0 0 0 0 0

for the following reason. The clearing process (3.12) allows for the possibility of
withdrawing some flexible capacity from the day-ahead market to have it available
at the balancing stage. This action may potentially increase the risk exposure of
flexible agents inasmuch as the capacity placed in the day-ahead market brings them
certain profits, while the capacity committed to beforehand in the balancing market
yields uncertain returns, the actual value of which depends on the eventual outcome
of uncertainties. In this sense, reserve capacity costs provide an extra value to the
flexible capacity that is allocated, in advance, to the balancing market.

A different way to increase the value of the energy for balancing, more aligned
with an energy-only electricity market, is to impose a price premium on the electricity
traded in the balancing market. In practice, this means that CU

i > Ci and CD
i < Ci in

the objective function (3.12a) of the two-stage stochastic programming model (3.12).
From a mathematical point of view, this price premium, or the aforementioned
reserve capacity costs, is required for the market-clearing procedure (3.12) not to
have multiple solutions. This is illustrated in the example below.

Example 3.4 (Multiplicity of Solutions) Let us consider again the two-bus system
described in Example 3.3. The two-stage stochastic programming model (3.12) is
now solved by setting the reserve capacity costs to zero, i.e., CRU

i = CRD
i = 0, for all

the three conventional units in the system. That being so, optimization problem (3.12)
has infinite solutions. Table 3.3 provides two possible sets of market outcomes leading
to the same expected system operation cost, which results in $2180. There is no need
for load curtailment.

Note that, in terms of the expected system operation cost, the following two results
are equivalent:

1. To dispatch unit 2 to 80 MW and the wind farm to 10 MW in the day-ahead
market, and then redispatch unit 2 to either 40 or 80 MW at the balancing stage,
depending on whether the eventual wind power production is 50 (scenario high)
or 10 MW (scenario low), respectively. This is the solution given in Table 3.3(a)
(Solution A).

2. To dispatch unit 2 to 40 MW and the wind farm to 50 MW at the scheduling
stage, and then redispatch unit 2 to 80 MW in the balancing market if scenario
low realizes. This is the solution shown in Table 3.3(b) (Solution B).
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However, if we allow for reserve capacity costs in the market-clearing prob-
lem (3.12), these solutions are not equivalent anymore. In particular, suppose that
CRU

i = $2/MW and CRD
i = $1/MW for all the three conventional units in the

system. In this case, Solution B is not optimal, as it requires “contracting” more
expensive reserve capacity. If we consider a price premium on the balancing energy,
say CU

i = Ci + 1 and CD
i = Ci − 1 for all i, instead of reserve capacity costs, Solu-

tion B becomes optimal. Indeed, this solution requires the same amount of balancing
energy as Solution A, but with a lower probability (i.e., the probability of scenario
low, 0.4).

3.3.2 Features of the Settlement Scheme

The settlement scheme (3.13) exhibits two important features, namely as follows:

1. It is revenue adequate in expectation, i.e., the payments that the system operator
must make to and receive from the participants do not cause it to incur a financial
deficit. The term expectation comes into play here due to the stochastic approach
on which the market-clearing tool (3.12) is built. Intuitively speaking, a market
settlement is said to be revenue adequate in expectation provided that it does not
cause the system operator to run a financial deficit over time if used repeatedly
over many trading periods.

2. It guarantees that the expected profit of each producer, either conventional or
stochastic, is greater than or equal to its operating costs.

These two properties are proved in an appendix to this chapter on page 92 and
illustrated through the example below.

Example 3.5 (Features of the Settlement Scheme) Let us turn back to the two-bus
system introduced in Example 3.3. This time, though, we assume that, comparatively
speaking, unit 1 is cheap, but completely inflexible; unit 2 is relatively expensive,
but moderately flexible; and unit 3 is expensive, but very flexible. The new data
for the three conventional units are collated in Table 3.4. Reserve capacity costs are
not considered, i.e., CRU

i and CRD
i are set to zero in market-clearing problem (3.12)

for all i. Instead, we assume that the market settlement allows for a price premium
on the balancing energy. This way, for example, unit 3 is willing to sell balancing
energy at a price $5/MWh higher than in the day-ahead market, i.e., CU

3 = $40/MWh.
Similarly, this unit is willing to purchase balancing energy at a cost $1/MWh lower
than its marginal cost of production, i.e., CD

3 = $34/MWh.
The electricity market is cleared using the two-stage stochastic programming

model (3.12). The results of the clearing process are provided in Table 3.5. The wind
farm is dispatched in the day-ahead market to 10 MW, W S = 10 MW. No load-
shedding events occur. Electricity prices are the same at the two buses of the system,
as the transmission line connecting them does not become congested in any of the two
scenarios, high and low, considered. Given the dispatched quantities in Table 3.5(a)
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Table 3.4 Cost and technical
data of conventional units in
Example 3.5. Powers in MW
and marginal costs in $/MWh

P max
i R

U,max
i R

D,max
i Ci CU

i CD
i

Unit 1 50 0 0 10 — —
Unit 2 110 20 30 30 50 20
Unit 3 100 100 100 35 40 34

and the day-ahead and balancing prices inTable 3.5(b), the profit made by each market
participant can be computed. For instance, the payment to unit 3 in scenario low is
given by 40 × 30 = $1200. Considering that the energy production cost of this unit
is equal to $35/MWh (recall that we assume that the price premium in the balancing
market does not reflect a cost intrinsic to the electricity generation process), the profit
it makes in this scenario is 1200 − 40 × 35 = −200$/MWh. Table 3.6 provides
the benefit obtained by each market participant both per scenario and in expectation.
Note that, at the day-ahead market stage, the profit made by unit 3 can be seen as a
random variable the expected value of which (173.3×0.6−200×0.4) is greater than
zero. The randomness of this profit stems from the uncertain character of the power
produced by the wind farm. The settlement scheme (3.13) guarantees cost recovery
for all producers in expectation, but this does not prevent unit 3 from incurring
economic losses in scenario low. Indeed, unit 3 enters the day-ahead dispatch in a
loss-making position (!), as its marginal production cost is equal to $35/MWh, while
the day-ahead market price is just $30/MWh. This unit is dispatched to 40 MW
in the day-ahead market with the aim that the system can benefit from its ability
and willingness to decrease its production in the case that scenario high eventually
realizes. It is actually in this scenario where unit 3 makes enough profit to guarantee
the recovery of its production cost in expectation.

Table 3.5 Market outcomes for Example 3.5. Powers in MW and prices in $/MWh

(a) Dispatch (W S = 10)

Unit Pi rU
iω rD

iω

High Low High Low

1 50 0 0 0 0
2 40 0 0 0 0
3 40 0 0 40 0

(b) Prices

λD
n , ∀n λB

nω, ∀n

High Low

30 25.67 35.75

Table 3.6 Profit of market
participants in Example 3.5.
Profit in $

Expected Per scenario

High Low

Unit 1 1000 1000 1000
Unit 2 0 0 0
Unit 3 24 173.3 −200
Load 1 −1200 −1200 −1200
Load 2 −3000 −3000 −3000
Wind farm 916 1326.7 300
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Table 3.7 Market outcomes for Example 3.5 when line capacity is reduced to 50 MW. Powers in
MW and prices in $/MWh

(a) Dispatch (W S = 10)

Unit Pi rU
iω rD

iω

High Low High Low

1 50 0 0 0 0
2 0 0 0 0 0
3 80 0 0 30 0

(b) Prices

λD
n , ∀n λB

nω, ∀n

High Low

Bus1 14.6 0 36.5
Bus2 35 34 36.5

Revenue adequacy in expectation is also ensured for the system as a whole. To
illustrate this, we calculate next the expected payments to conventional producers
(ρ̂I ), the expected payment to the wind power producer (ρ̂Q), and the expected
payments from consumers (ρ̂J ), i.e.,

ρ̂I = 50 × 30︸ ︷︷ ︸
Unit 1

+ 40 × 30︸ ︷︷ ︸
Unit 2

+ 40 × 30 − 0.6 × 40 × 25.67︸ ︷︷ ︸
Unit 3

= $3284,

ρ̂Q = 10 × 30 + 0.6 × (50 − 10) × 25.67 + 0.4 × (10 − 10) × 35.75 = $916,

ρ̂J = 40 × 30︸ ︷︷ ︸
Load 1

+ 100 × 30︸ ︷︷ ︸
Load 2

= $4200.

Thus, the system is expected not to incur deficit since $3284 + $916 − $4200 = 0.
To conclude this example, we reduce the capacity of the single line in the system

to 50 MW. Dispatched quantities and electricity prices in this new variant are shown
in Table 3.7. If the eventual wind power production is high (50 MW), the line be-
comes congested and the balancing price differs between buses, that is, it becomes
a locational marginal price (LMP). In contrast, no network bottleneck occurs in
scenario low, and the resulting balancing price is unique accordingly. However, it is
worth noting that the day-ahead price is also a locational marginal price even though
the optimal day-ahead dispatch {P ∗

1 = 50, P ∗
2 = 0, P ∗

3 = 80, W S∗ = 10} does not
cause itself network congestion. This highlights the strong coupling between the
day-ahead and the balancing prices, which is captured by the two-stage stochas-
tic programming approach. Intuitively speaking, the day-ahead price anticipates
probable line bottlenecks during the real-time operation of the power system.

The market-clearing procedure (3.12) is designed to produce a day-ahead dis-
patch {P ∗

i , ∀i ∈ I ; W S∗
q , ∀q ∈ Q} by accounting for its potential impact

on the system balancing costs using stochastic programming. The settlement
scheme (3.13) underpins this dispatch in a financial sense. In particular, the
day-ahead price λD∗

n makes all market participants satisfied with their respec-
tive day-ahead positions, as long as they seek to maximize their expected profit
and are willing to take the risk of incurring losses under certain scenarios.
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3.4 Clearing the Day-Ahead Market Using Robust Optimization

Robust optimization is an alternative framework to stochastic programming for deal-
ing with optimization problems under uncertainty. This approach aims at determining
a solution that is feasible under any realization of the uncertain parameters involved
in an optimization problem, and optimal in their worst-case realization. The reader
is referred to Appendix D for a brief introduction to the topic. The framework of
robust optimization is relevant for the problems considered in this chapter. Indeed,
the determination of the optimal dispatch in electricity markets is, as we have seen so
far in this chapter, a problem of optimization under uncertainty, where the uncertain
parameters include production from renewable sources. Furthermore, robustness is
a quality that is particularly sought after in these models, as an underestimation
of the reserve needs may result in costly load-shedding events. In this section, we
shall learn how dispatch problems in electricity markets can be tackled using robust
optimization.

Let us recall the problem of determining the day-ahead energy and reserve dis-
patch considered in Sect. 3.2. As seen in that section, such a problem is a two-stage
optimization problem, where the here-and-now decisions comprise day-ahead energy
and reserve dispatch, while the redispatch at the balancing stage is a wait-and-see
decision, which adapts to the realization of the uncertainty. In Sect. 3.2.3, such a
problem is cast as a stochastic programming problem that aims at minimizing the
total costs of energy dispatch, reserve capacity, and redispatch in expectation over
a discrete set of scenarios. An alternative approach to this problem based on robust
optimization can be sketched as follows:

Minimize Day-ahead dispatch cost + Worst-case balancing cost
subject to
• Day-ahead market constraints:

– Power balance equations at the day-ahead stage.
– Reserve capacity determination constraints.
– Bounds of reserve and energy offers.

• Balancing market constraints:
– Power balance equations at the balancing stage in the worst-case

realization of the uncertain parameters.
– Network constraints in the worst-case realization of the uncertain

parameters.
– Deployed reserve determination constraints in the worst-case realization

of the uncertain parameters.
• Declarations of non-negative variables.

In practice, the mathematical formulation of an adaptive robust optimization prob-
lem, i.e., including recourse (wait-and-see) decisions, is more complex than
the corresponding stochastic programming one. Indeed, the robust formulation



82 3 Clearing the Day-Ahead Market with a High Penetration of Stochastic Production

Fig. 3.3 Modified two-bus
system

Bus 1

Load 1
(40 MW)

Unit 1 Unit 2 Wind
Farm 1

Bus 2

Load 2
(100 MW)Unit 3

Wind
Farm 2

100 MW

summarized in the box above involves the determination of the worst-case balancing
cost, which confers the problem a min-max-min structure. This is illustrated in the
following illustrative example.

Example 3.6 (An Adaptive Robust Optimization Approach to Energy and Reserve
Dispatch). Let us consider a modified version of the two-node system considered in
Example 3.3, which is illustrated in Fig. 3.3. Note that the modified two-node system
includes two wind farms, one per each node of the network. All the parameters of
the system, including cost, production, and transmission limits as well as demand
are unchanged with respect to the ones used in Example 3.3.

Objective Function: The worst-case system operation cost (WCC) can be expressed
as follows:

WCC = 10P1 + 30P2 + 35P3︸ ︷︷ ︸
Day-ahead energy costs

+ 16RU
1 + 15RD

1 + 13RU
2 + 12RD

2 + 10RU
3 + 9RD

3︸ ︷︷ ︸
Reserve capacity costs︸ ︷︷ ︸

Day-ahead dispatch costs

+ Q(P1, P2, P3, RU
1 , RU

2 , RU
3 , RD

1 , RD
2 , RD

3 , δ0
1 , δ0

2)︸ ︷︷ ︸
Worst-case energy redispatch costs

. (3.14)

We shall now explicitly write the constraints and the worst-case energy redispatch
costs.

Day-Ahead Market Constraints: Similarly to Example 3.3, power balance is en-
forced at both nodes. However, here we assume that the day-ahead dispatch for the
wind power producers is equal to their conditional mean forecast, which, for this
particular example, is considered to be Ŵ1 = 15 MWh and Ŵ2 = 30 MWh. This
writes as follows:

P1 + P2 + 15 − 40 = (δ0
1 − δ0

2)

0.13
(bus 1),

P3 + 30 − 100 = (δ0
2 − δ0

1)

0.13
(bus 2),
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We define bus 1 as the reference node by setting δ0
1 to 0. Transmission and production

capacity are enforced by (3.9) and (3.10), precisely as in the stochastic programming
formulation in Example 3.3.

Before enforcing the constraints at the balancing stage, we formulate the worst-
case cost of the balancing operation, which was implicitly defined in (3.14) as a
function Q( · ) of the here-and-now decisions.

Worst-Case Balancing Cost:
For a given set of here-and-now decisions, ΞD, the following max-min formulation
defines the worst-case balancing cost for the problem at hand:

Q( · ) = max
ΔW1,ΔW2∈W

min
ΞB∈B(ΞD, ΔW )

[
10
(
rU

1 − rD
1

)+ 30
(
rU

2 − rD
2

)

+ 35
(
rU

3 − rD
3

)+ 200
(
Lshed

1 + Lshed
2

) ]
. (3.15)

The outer maximization problem picks the worst-case realization of the deviations
ΔW1 and ΔW2 of stochastic production from wind farms 1 and 2, respectively, from
their conditional mean forecast. These deviations are to be chosen from within an
uncertainty set W , which we shall define later.

Once the worst-case realization of the uncertainty is fixed, the inner minimization
problem determines the optimal recourse decision. Notice that the set ΞB of recourse
decisions includes upward and downward redispatch, rU and rD, respectively, load-
shedding, Lshed, wind power spillage, W spill, as well as voltage angles, δ. These
decision variables must be optimized within the feasibility set B, which depends
on the here-and-now decision set ΞD and the worst-case realization ΔW of the
uncertainty. In turn, the feasibility set B is defined by the constraints modeling
the balancing operation of the power system (i.e., the recourse problem). These
constraints will be introduced later on.

Definition of the Uncertainty Set (W): Typically, polyhedral uncertainty sets are
chosen in problems of adaptive robust optimization. In this example, we con-
sider symmetrical intervals for the deviation of wind power production from the
conditional mean forecast:

|ΔW1| ≤ 10, (3.16a)

|ΔW2| ≤ 20. (3.16b)

Furthermore, we set a budget of uncertainty to limit the overall output deviation for
the wind power producers in the network.

|ΔW1|
10

+ |ΔW2|
20

≤ 1.4. (3.17)

Basically, such a constraint guarantees that the output for the two wind farms cannot
simultaneously be at the lower or upper bound of their respective feasible production
intervals resulting from (3.16). Indeed, if the production from one wind farm is at
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Fig. 3.4 Uncertainty set for
the deviation of wind power
production from the
conditional mean forecast
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the lower bound, then the deviation for the other must be at most equal to 40 % of
its maximum value. This reflects nature’s behavior.

The constraints (3.16) and (3.17) result in the polyhedral uncertainty set illustrated
in Fig. 3.4.

Balancing Market Constraints: These constraints define the feasibility set B in
(3.15), which determines the operating region of the power system in real time. No-
tice that in a robust optimization framework, it is sufficient to enforce one instance
of the operation constraints, valid for the worst-case realization of the uncertainty;
in this case, the deviation of stochastic power production. In contrast, we had to
enforce one set of balancing constraints per scenario in the stochastic programming
approach in Example 3.3.

The power balance at each node of the network is enforced by the following
constraints:

rU
1 + rU

2 − rD
1 − rD

2 + Lshed
1 + ΔW1 − W

spill
1 = (δ1 − δ0

1 + δ0
2 − δ2)

0.13
(bus 1),

rU
3 − rD

3 + Lshed
2 + ΔW2 − W

spill
2 = (δ2 − δ0

2 + δ0
1 − δ1)

0.13
(bus 2).

We consider again bus 1 as the reference node in the balancing stage by setting
δ1 = 0.

The following constraints enforce the power transmission capacity between buses
1 and 2 at the balancing stage:

(δ1 − δ2)

0.13
≤ 100,

(δ2 − δ1)

0.13
≤ 100.

The amount of spilled wind power production must be lower than, or equal to, the
actual wind power production value. This is enforced by the following inequalities:

W
spill
1 ≤ 15 + ΔW1 (wind farm 1),

W
spill
2 ≤ 30 + ΔW2 (wind farm 2).
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In a similar fashion, load shedding must be lower than or equal to the actual
consumption value:

Lshed
1 ≤ 40 (load 1),

Lshed
2 ≤ 100 (load 2).

The additional energy redispatch is limited by the reserve capacity scheduled in the
day-ahead market. This is ensured by the following constraints:

rU
1 ≤ RU

1 , rD
1 ≤ RD

1 , rU
2 ≤ RU

2 , rD
2 ≤ RD

2 , rU
3 ≤ RU

3 , rD
3 ≤ RD

3 .

Declarations of Non-Negative Variables: Finally, we enforce the non-negativity of
reserve, production, and consumption quantities in both the day-ahead and balancing
stages:

RU
1 , RU

2 , RU
3 , RD

1 , RD
2 , RD

3 , P1, P2, P3 ≥ 0 (day-ahead stage),

rU
1 , rU

2 , rU
3 , rD

1 , rD
2 , rD

3 , Lshed
1 , Lshed

2 , W
spill
1 , W

spill
2 ≥ 0 (balancing stage).

Complete Model Formulation: By joining the objective function with the constraints
defined above, we get the following min-max-min problem formulation:

Min.
ΞD

10P1 + 30P2 + 35P3 + 16RU
1 + 15RD

1 + 13RU
2 + 12RD

2 + 10RU
3 + 9RD

3

+ max
ΔW1,ΔW2

min
ΞB

[
10
(
rU

1 − rD
1

)+ 30
(
rU

2 − rD
2

)+ 35
(
rU

3 − rD
3

)

+ 200
(
Lshed

1 + Lshed
2

) ]
(3.18a)

s.t. rU
1 + rU

2 − rD
1 − rD

2 + Lshed
1

+ ΔW1 − W
spill
1 = (δ1 − δ0

1 + δ0
2 − δ2)

0.13
, (3.18b)

rU
3 − rD

3 + Lshed
2 + ΔW2 − W

spill
2 = (δ2 − δ0

2 + δ0
1 − δ1)

0.13
, (3.18c)

− 100 ≤ (δ1 − δ2)

0.13
≤ 100, (3.18d)

δ1 = 0, (3.18e)

W
spill
1 ≤ 15 + ΔW1, (3.18f)

W
spill
2 ≤ 30 + ΔW2, (3.18g)

Lshed
1 ≤ 40, (3.18h)

Lshed
2 ≤ 100, (3.18i)

rU
1 ≤ RU

1 , rU
2 ≤ RU

2 , rU
3 ≤ RU

3 , (3.18j)
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rD
1 ≤ RD

1 , rD
2 ≤ RD

2 , rD
3 ≤ RD

3 , (3.18k)

rU
1 , rU

2 , rU
3 , rD

1 , rD
2 , rD

3 , Lshed
1 , Lshed

2 , W spill
1 , W spill

2 ≥ 0, (3.18l)

s.t. |ΔW1| ≤ 10, (3.18m)

|ΔW2| ≤ 20, (3.18n)

|ΔW1|
10

+ |ΔW2|
20

≤ 1.4, (3.18o)

s.t. P1 + P2 + 15 − 40 = (δ0
1 − δ0

2)

0.13
, (3.18p)

P3 + 30 − 100 = (δ0
2 − δ0

1)

0.13
, (3.18q)

−100 ≤ (δ0
1 − δ0

2)

0.13
≤ 100, (3.18r)

δ0
1 = 0, (3.18s)

P1 + RU
1 ≤ 50, (3.18t)

P1 − RD
1 ≥ 0, (3.18u)

P2 + RU
2 ≤ 110, (3.18v)

P2 − RD
2 ≥ 0, (3.18w)

P3 + RU
3 ≤ 100, (3.18x)

P3 − RD
3 ≥ 0, (3.18y)

RU
1 , RU

2 , RU
3 , RD

1 , RD
2 , RD

3 , P1, P2, P3 ≥ 0. (3.18z)

In the formulation above, ΞD indicates the set of day-ahead decision variables, i.e.,
the energy dispatch, P1, P2, P3, the dispatch of upward reserve RU

1 , RU
2 , RU

3 , and of
downward reserve, RD

1 , RD
2 , RD

3 , as well as the voltage angles, δ0
1 and δ0

2 , at this stage.
Notice that in the model above, we can introduce an auxiliary variable β repre-

senting the worst-case recourse cost Q( · ), which is the optimal objective function
value of the inner max-min problem in (3.18a). We could then solve problem (3.18)
as a single minimization problem after enforcing the following constraints:

β ≥10
[
rU

1 (ΔW1, ΔW2) − rD
1 (ΔW1, ΔW2)

]
+ 30

[
rU

2 (ΔW1, ΔW2) − rD
2 (ΔW1, ΔW2)

]
+ 35

[
rU

3 (ΔW1, ΔW2) − rD
3 (ΔW1, ΔW2)

]
+ 200

[
Lshed

1 (ΔW1, ΔW2) + Lshed
2 (ΔW1, ΔW2)

]
, ∀ΔW1, ΔW2 ∈ W ,

(3.19)

where we write the optimal recourse decision, i.e., the redispatch at the balancing
stage, as a function of the deviation of wind power production. However, let us



3.4 Clearing the Day-Ahead Market Using Robust Optimization 87

recall that the uncertainty set W , defined by (3.16)–(3.17) and illustrated in Fig. 3.4,
includes an infinite number of points. Then, there is an instance of each balancing
market variable and constraint for each pair (ΔW1, ΔW2) ∈ W .

Since the set W is uncountable, the reformulation described above would result
in a problem with an infinite number of constraints and of variables for the balancing
stage. In practice, however, we can get around this issue. Indeed, it can be shown
that only the vertices v = A, B, . . . , H of the polyhedral set W illustrated in Fig. 3.4
can be part of a solution to the inner max-min problem in (3.18). The interested
reader is referred to the appendix on page 95 at the end of this chapter for a proof
of this property. As a result, we can consider only this finite number of vertices
v = A, B, . . . , H of the uncertainty set, and cast problem (3.18) as follows:

Min. 10P1 + 30P2 + 35P3 + 16RU
1 + 15RD

1 + 13RU
2 + 12RD

2 + 10RU
3 + 9RD

3 + β

(3.20a)

s.t. (3.18p)–(3.18z),

β ≥ [10
(
rU

1v − rD
1v

)+ 30
(
rU

2v − rD
2v

)
+ 35

(
rU

3v − rD
3v

)+ 200
(
Lshed

1v + Lshed
2v

) ]
, v = A, . . . , H , (3.20b)

rU
1v + rU

2v − rD
1v − rD

2v + Lshed
1v

+ ΔW1v − W
spill
1v = (δ1v − δ0

1 + δ0
2 − δ2v)

0.13
, v = A, . . . , H , (3.20c)

rU
3v − rD

3v + Lshed
2v

+ ΔW2v − W
spill
2v = (δ2v − δ0

2 + δ0
1 − δ1v)

0.13
, v = A, . . . , H , (3.20d)

(δ1v − δ2v)

0.13
≤ 100, v = A, . . . , H , (3.20e)

(δ2v − δ1v)

0.13
≤ 100, v = A, . . . , H , (3.20f)

δ1v = 0, v = A, . . . , H , (3.20g)

W
spill
1v ≤ 15 + ΔW1v, v = A, . . . , H , (3.20h)

W
spill
2v ≤ 30 + ΔW2v, v = A, . . . , H , (3.20i)

Lshed
1v ≤ 40, v = A, . . . , H , (3.20j)

Lshed
2v ≤ 100, v = A, . . . , H , (3.20k)

rU
1v ≤ RU

1 , rU
2v ≤ RU

2 , rU
3v ≤ RU

3 , v = A, . . . , H , (3.20l)

rD
1v ≤ RD

1 , rD
2v ≤ RD

2 , rD
3v ≤ RD

3 , v = A, . . . , H , (3.20m)

rU
1v, rU

2v, rU
3v, rD

1v, rD
2v, rD

3v, Lshed
1v , Lshed

2v , W spill
1v , W spill

2v ≥ 0, v = A, . . . , H. (3.20n)
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Table 3.8 Energy (in MWh) and reserve schedule (in MW) obtained from the robust optimization
model. The dispatched wind energy production is 45 MWh

P RU RD

Unit 1 50 0 0
Unit 2 45 24 0
Unit 3 0 0 0

Notice that the reformulation above resembles the stochastic programming problem
(3.11), although with two fundamental differences. Firstly, instead of employing sce-
narios ω, we consider the vertices v of the polyhedral feasible set for the deviation of
wind power production defined by (3.16)–(3.17). Secondly, as a result of inequalities
(3.20b), the objective function (3.20a) aims at minimizing the total worst-case cost of
energy dispatch, reserve, and energy redispatch rather than its value in expectation.

Table 3.8 illustrates the day-ahead schedule determined using model (3.20). The
following observations should be pointed out.

1. Robust optimization yields a rather conservative schedule in terms of upward
reserve. Indeed, the scheduled value for this quantity is sufficient to cover any
negative deviation of wind power production in the uncertainty set W . Notice
that the largest production deficit, equal to 24 MWh for the aggregation of the
two nodes, is attained at vertex F in Fig. 3.4.

2. No downward reserve is scheduled. This stems from the combination of two
facts. Firstly, robust optimization focuses on the worst-case realization of the
uncertainty. Secondly, there is no cost associated with wind power spillage, while
the penalty for load shedding is relatively large. This implies that the worst-case
realization of the uncertainty is a negative deviation of wind power production
from its mean forecast. Notice that for cases of production deficit, only upward
reserve is needed. Therefore, scheduling downward reserve would unnecessarily
increase the worst-case system cost.

3. Because of the focus on the worst-case realization of the uncertainty, robust
optimization prioritizes the scheduling of reserves with the lowest sum of pro-
duction and upward reserve cost. In this case, unit 2 is preferred to unit 3, since
C2 + CU

2 < C3 + CU
3 . This may not be the case for the stochastic programming

approach. Indeed, in the latter framework, the higher production cost C3 is dis-
counted by the probability of actually deploying reserve. On the contrary, the
cost of buying reserve, which is lower for unit 3 than for unit 2, is fixed. As a
result, scheduling reserve from unit 3 may be more beneficial if the probability
of deploying that reserve is sufficiently low.

Example 3.7 (Comparing Robust Optimization and Stochastic Programming). Let
us now compare the results obtained from the robust optimization model presented
in the previous example with those of the stochastic programming model (3.11). In
the implementation of the latter model, we employ a set of 100 scenarios sampled
randomly from a uniform distribution the support of which is the uncertainty set
illustrated in Fig. 3.4.
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Table 3.9 Energy (in MWh) and reserve schedule (in MW) obtained from the stochastic
programming model. The dispatched wind energy production is 27.72 MWh

P RU RD

Unit 1 50 0 0
Unit 2 40.28 0 0
Unit 3 22 0 22

Table 3.10 Breakdown of system cost with the stochastic programming and the robust optimization
approaches. Values in $

Stochastic Programming Robust Optimization

Energy dispatch 2478.29 1850
Reserve dispatch 197.95 312
Total day-ahead 2676.24 2162

Expected Worst-case Expected Worst-case
Energy redispatch −521.75 0 144.92 720
Load shedding 26.03 1344.53 0 0
Total balancing −495.72 1344.53 144.92 720
Total aggregate 2180.53 4020.78 2306.92 2882

Table 3.9 illustrates the day-ahead energy and reserve dispatch obtained for the
conventional producers in the stochastic programming approach. Remarkably, re-
serve in this solution is assigned to unit 3 rather than to unit 2, as occurs in Table 3.8
for the robust optimization approach. This fact should be considered in view of ob-
servation 3 in the previous example. Furthermore, it should be noticed that the total
day-ahead dispatch for the conventional units is larger in the stochastic programming
approach. In turn, this results in a lower dispatch for the wind power producers, which
totals 27.72 MWh, i.e., the amount needed to meet the total load (140 MWh). No-
tice that the dispatch for wind power producers is not constrained to be equal to the
conditional mean forecast of production in model (3.11).

A breakdown of the system cost for the two approaches is provided in Table 3.10.
The day-ahead cost is higher for the stochastic programming solution than for the
robust optimization one, which dispatches more (zero-cost) wind. However, the
former solution benefits from the possibility of redispatching unit 3 downward in
the balancing stage, resulting in gains in expectation in this stage. The net effect
of the combination of these two facts on the total aggregate expected cost is trivial:
the total expected cost is lower in the stochastic programming approach than in the
robust optimization one.

The situation is quite the opposite when looking at the worst-case realization
of the stochastic production within the uncertainty set illustrated in Fig. 3.4. At
the vertex F of this polyhedron, the two wind farms combined produce 24 MWh
less than their expected output (45 MWh in total). In the stochastic programming
solution, no upward reserve is available to cope with a day-ahead dispatch that is
short by 6.72 MWh. Therefore, this amount becomes load shedding, which makes
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the worst-case balancing cost skyrocket to over $1300. It should also be noticed that
smaller load-shedding events take place in some of the scenarios used as input to
the stochastic programming problem, which result in a load-shedding cost equal to
roughly $26 in expectation. In comparison, load shedding never takes place with the
robust optimization solution.

We now give the general formulation for the market-clearing model for energy
and reserve dispatch based on robust optimization. We employ the same notation
as in Sect. 3.2.3. Furthermore, the assumptions made at the end of that section still
hold with the exception of A6. Contrarily to this assumption, we now model the
uncertainty through a polyhedral uncertainty set W , where the stochastic parameters
can take values in.

Min.
ΞD

∑
i∈I

(
CiPi + CRU

i RU
i + CRD

i RD
i

)+
∑
q∈Q

CqŴq

+ max
ΔW

min
ΞB

⎡
⎣∑

i∈I

(
CU

i rU
i −CD

i rD
i

)+
∑
q∈Q

Cq

(
ΔWq−W spill

q

)+
∑
j∈J

V LOL
j Lshed

j

⎤
⎦

(3.21a)

s.t.
∑
i∈ΦI

n

(
rU
i − rD

i

)+
∑

j∈ΦJ

n

Lshed
j +

∑
q∈ΦQ

n

(
ΔWq − W spill

q

)

+
∑

�∈Λ|o(�)=n

b�

(
δ0
o(�) − δo(�) − δ0

e(�) + δe(�)
)

−
∑

�∈Λ|e(�)=n

b�

(
δ0
o(�) − δo(�) − δ0

e(�) + δe(�)
) = 0, ∀n ∈ N ,

(3.21b)

b�

(
δo(�) − δe(�)

) ≤ Cmax
� , ∀� ∈ Λ, (3.21c)

− b�

(
δo(�) − δe(�)

) ≤ Cmax
� , ∀� ∈ Λ, (3.21d)

δ1 = 0, (3.21e)

rU
i ≤ RU

i , ∀i ∈ I , (3.21f)

rD
i ≤ RD

i , ∀i ∈ I , (3.21g)

Lshed
j ≤ Lj , ∀j ∈ J , (3.21h)

W spill
q ≤ Ŵq + ΔWq , ∀q ∈ Q, (3.21i)

rU
i , rD

i ≥ 0, ∀i ∈ I ; W spill
q ≥ 0, ∀q ∈ Q; Lshed

j ≥ 0, ∀j ∈ J ,
(3.21j)

s.t. |ΔWq | ≤ ΔWmax
q , ∀q ∈ Q, (3.21k)

∑
q∈Q

|ΔWq |
ΔWmax

q

≤ Γ , (3.21l)
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s.t.
∑
i∈ΦI

n

Pi +
∑

q∈ΦQ

n

Ŵq −
∑

j∈ΦJ

n

Lj −
∑

�∈Λ|o(�)=n

b�

(
δ0
o(�) − δ0

e(�)

)

+
∑

�∈Λ|e(�)=n

b�

(
δ0
o(�) − δ0

e(�)

) = 0, ∀n ∈ N , (3.21m)

b�

(
δ0
o(�) − δ0

e(�)

) ≤ Cmax
� , ∀� ∈ Λ, (3.21n)

−b�

(
δ0
o(�) − δ0

e(�)

) ≤ Cmax
� , ∀� ∈ Λ, (3.21o)

δ0
1 = 0, (3.21p)

Pi + RU
i ≤ P max

i , ∀i ∈ I , (3.21q)

Pi − RD
i ≥ 0, ∀i ∈ I , (3.21r)

RU
i ≤ R

U,max
i , ∀i ∈ I , (3.21s)

RD
i ≤ R

D,max
i , ∀i ∈ I , (3.21t)

Pi , R
U
i , RD

i ≥ 0, ∀i ∈ I , (3.21u)

where Ŵq is the conditional mean forecast for the power generated by stochastic pro-
ducer q and Γ is the budget of uncertainty, which limits the overall output deviation
for stochastic producers, as in (3.17).

We conclude the section by mentioning that model (3.21) need not be solved by
enumeration of all the vertices of the uncertainty set W . Indeed, there exist iterative
methods based on Benders decomposition, see [8], where vertices of the feasible
polyhedron are generated on demand and a corresponding Benders cut is added
at each iteration. In this way, the objective value as a function of the first-stage
variables is constructed by sequential approximations, and consequently, more and
more accurate estimates of the solution are obtained at each iteration. We refer the
interested reader to [2] and [11] for further details on this solution technique.

Finally, note that it is not trivial to derive a pricing scheme for the robust opti-
mization approach. Research is currently underway to develop pricing schemes with
desirable short- and long-term properties, such as to convey proper marginal signals
and to guarantee investment recovery, respectively.

3.5 Summary and Conclusions

This chapter describes market-clearing procedures for the day-ahead market under
a large-scale penetration of stochastic renewable production sources.

Firstly, this procedure is formulated as a two-stage stochastic programming
problem, which provides production and consumption levels, allocation of reserve
capacity, and clearing prices. The clearing algorithm is of particular interest for
markets with a significant number of stochastic producers.

To mimic the actual operation of electric energy systems, a two-stage decision
framework, as the one proposed in this chapter, is required. However, such two-step
decision framework is not that common in the technical literature.
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The proposed stochastic programming framework allows anticipating the impact
of the realization of uncertain events and, as a result, achieving the best possible pre-
positioning of the market against such uncertain events, with the ultimate purpose of
minimizing the expected system cost.

Following widely accepted marginal pricing theory, the algorithm proposed results
in energy-only prices, which ensure cost recovery, on average, for all operating
producers, and revenue adequacy for the system, also on average.

The algorithm proposed is computationally tractable provided that the number
of scenarios required to describe the future realization of the uncertainty is small
enough.

Finally, an alternative approach based on adaptive robust optimization is in-
troduced. The market-clearing procedure developed in this framework aims at
minimizing the total cost of system operation in the worst-case realization of the
uncertain parameters, taking into account the operation at the balancing market.

3.6 Further Reading

Relevant manuals on electricity markets include [16] and [6]. A standard reference
on power system reliability is [3], which elaborates on methods to estimate the
amount of reserve required to attain a certain level of reliability. The modeling of
reliability metrics within a mixed-integer linear programming formulation can be
found in [5; 9]. The concepts of stochastic programming are provided in [4], and its
applications to decision making under uncertainty in electricity markets, including
the market-clearing problem, are presented in [7]. Settlement schemes based on
the simultaneous dispatch of energy and reserve using stochastic optimization are
discussed, for example, in [17]. Further details on pricing electricity in energy-
only markets cleared using stochastic programming can be found in [12] and [14].
The reader is referred to [1] for a tutorial on robust optimization. Applications of
adaptive robust optimization focusing on electricity markets, and in particular on
unit commitment, comprise [2] and [11].

Appendix 1: Settlement Scheme Properties

The properties of the settlement scheme in Sect. 3.3.1 are formally stated below in
the form of theorems. For this purpose, we define first the following indices:

s(i) Index of the bus where conventional unit i is located.
s(j ) Index of the bus where load j is located.
s(q) Index of the bus where stochastic production unit q is located.

Theorem 3.1 (Revenue adequacy in expectation). Consider the market-clearing
procedure (3.12), built on a stochastic programming framework, and the resulting sets



3.6 Further Reading 93

of dual variables
{
λD

n, ∀n ∈ N
}

and
{(

λB
nω, πω

)
, ∀n ∈ N , ∀ω ∈ Ω}. The settlement

scheme (3.13) is revenue adequate in expectation.

Proof Mathematically, the settlement scheme (3.13) is revenue adequate in
expectation if, at the optimum, it holds

∑
n∈N

λD∗
n

⎛
⎜⎝∑

i∈ΦI

n

P ∗
i +

∑
q∈ΦQ

n
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q −

∑
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n
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⎞
⎟⎠+

∑
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∑
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nω
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(
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iω

)

−
∑

q∈ΦQ

n

(
W S∗

q + W spill∗
q − Wqω

)+
∑

j∈ΦJ

n

Lshed∗
jω

]
≤ 0, (3.22)

where
{
λB∗

nω = γ ∗
nω

/
πω, ∀n ∈ N , ∀ω ∈ Ω

}
are the probability-removed balancing

prices and superscript “∗” denotes optimal values.
Using the power balance equations (3.12b) and (3.12c), expression (3.22) can be

equivalently rewritten as follows:

∑
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n
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Let us consider the following partial Lagrangian function of problem (3.12):
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94 3 Clearing the Day-Ahead Market with a High Penetration of Stochastic Production

Since problem (3.12) is linear and thus convex, L is minimized subject to the
rest of constraints, i.e., constraints (3.12d)–(3.12s), at the optimum. Note that by
moving the power balance equations (3.12b) and (3.12c) to the objective func-
tion (3.12a) to form the partial Lagrangian function L, the resulting optimization
problem {minimize (3.24), subject to (3.12d)–(3.12s)} can be decomposed into
appropriate minimization subproblems for any given set of Lagrange multipliers
{λD

n , ∀n ∈ N ; γnω, ∀n ∈ N , ∀ω ∈ Ω}. In particular, the summation of the following
terms, extracted from (3.24),

∑
n∈N

λD
n
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e(�) + δe(�)ω
)⎤⎦ (3.25)

is minimized subject to constraints (3.12d)–(3.12i) at the optimum.
A solution such that δ0

n = 0, ∀n ∈ Ω; δnω = 0, ∀n ∈ N , ∀ω ∈ Ω, is feasible for
the minimization subproblem {minimize (3.25), subject to (3.12d)–(3.12i)}, as long
as the capacity of transmission lines is non-negative, i.e., Cmax

� ≥ 0, ∀� ∈ Λ. This
solution allows us to set the upper bound of expression (3.25) to zero. Therefore,
inequality (3.23) holds, and this concludes the proof.

Theorem 3.2 (Cost recovery in expectation). Consider the market-clearing pro-
cedure (3.12), built on a stochastic programming framework, and the resulting sets
of dual variables

{
λD

n , ∀n ∈ N
}

and
{(

λB
nω, πω

)
, ∀n ∈ N , ∀ω ∈ Ω}. The settlement

scheme (3.13) guarantees cost recovery for all market participants in expectation.

Proof The settlement scheme (3.13) ensures that both conventional and stochastic
producers recover their energy production costs in expectation. Mathematically, this
is expressed as follows:
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and ∑
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−
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) ≤ 0, ∀q ∈ Q, (3.27)
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where superscript “∗” denotes optimal values and λB∗
nω = γ ∗

nω

πω
, ∀n ∈ N , ∀ω ∈ Ω.

Let us consider again the partial Lagrangian function (3.24). At the optimum,
this function is minimized subject to constraints (3.12d)–(3.12s). As stated in the
proof for revenue adequacy in expectation, the optimization problem {minimize
(3.24), subject to (3.12d)–(3.12s) can be decomposed into appropriate minimization
subproblems for any given set of shadow prices {λD

n , ∀n ∈ N ; γnω, ∀n ∈ N , ∀ω ∈ Ω}.
Specifically, the series of terms extracted from (3.24)

CiPi + CRU
i RU
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i RD

i +
∑
ω∈Ω

πω

(
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i rU
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i rD
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)− λD
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−
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γs(i)ω
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)
, (3.28)

and∑
ω∈Ω

πωCq

(
Wqω − W spill
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)− λD
s(q)W

S
q −

∑
ω∈Ω

γs(q)ω
(
Wqω − W S

q − W spill
qω

)
, (3.29)

are minimized, for all i ∈ I and for all q ∈ Q, subject to the set of constraints
{(3.12k)–(3.12p),(3.12s)} and {(3.12j),(3.12r),(3.12s)}, respectively.

The collection of decision variables such that Pi = RU
i = RD

i = 0, ∀i ∈ I (here,
we appeal to assumption A7, according to which conventional producers are fully
dispatchable) and rU

iω = rD
iω = 0, ∀i ∈ I , ∀ω ∈ Ω, constitutes a feasible solution to

the minimization subproblem made up of the objective function (3.28) and the group
of constraints (3.12k)–(3.12p), and (3.12s). Likewise, the set of decision variables
such that W S

q = 0, ∀q ∈ Q, and W
spill
qω = Wqω, ∀q ∈ Q, ∀ω ∈ Ω, is a feasible

solution to the minimization subproblem composed of the objective function (3.29)
and constraints (3.12j),(3.12r), and(3.12s). This pair of solutions sets the upper bound
of expressions (3.28) and (3.29) to zero. Consequently, inequalities (3.26) and (3.27)
hold, which concludes the proof.

It is important to underline that the decomposition-based reasoning employed to
prove Theorem 3.2 cannot be used, however, to prove cost recovery per scenario due
to the day-ahead dispatch variables Pi and W S

q , which link all the scenarios together.
This is so because the settlement scheme (3.13) allows power producers to incur
economic losses in some scenarios as long as they recover their production costs in
expectation, i.e., in the long run and under similar conditions.

Appendix 2: Worst-Case Realization of Uncertain Production
in Robust Optimization

In this appendix, we prove that the worst-case uncertainty realization for the adaptive
robust optimization problem (3.21) occurs at an extreme point of the polyhedral
uncertainty set W for the deviation of wind power production from its conditional
mean forecast.
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Let us consider the inner max-min problem in (3.21):
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b�

(
δo(�) − δe(�)

) ≤ Cmax
� : σ U

� , ∀� ∈ Λ, (3.30c)
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δ1 = 0 : ν, (3.30e)

rU
i ≤ RU

i : μU
i , ∀i ∈ I , (3.30f)

rD
i ≤ RD

i : μD
i , ∀i ∈ I , (3.30g)

Lshed
j ≤ Lj : εshed

j , ∀j ∈ J , (3.30h)

W spill
q ≤ Ŵq + ΔWq : εspill

q ∀q ∈ Q, (3.30i)

rU
i , rD

i ≥ 0, ∀i ∈ I ; W spill
q ≥ 0, ∀q ∈ Q; Lshed

j ≥ 0, ∀j ∈ J ,
(3.30j)

s.t. |ΔWq | ≤ ΔWmax
q , ∀q ∈ Q, (3.30k)

∑
q∈Q

|ΔWq |
ΔWmax

q

≤ Γ . (3.30l)

Notice that we indicated the dual variables for the inner minimization problem on
the right-hand side of the corresponding constraints, preceded by a colon.

First of all, we can reformulate inequalities (3.30k) and (3.30l) as follows:

− ΔWmax
q ≤ ΔWq ≤ ΔWmax

q , ∀q ∈ Q, (3.31a)

ΔWq = ΔW+
q − ΔW−

q , ∀q ∈ Q, (3.31b)

∑
q∈Q

ΔW+
q + ΔW−

q

ΔWmax
q

≤ Γ , (3.31c)

ΔW+
q , ΔW−

q ≥ 0, ∀q ∈ Q. (3.31d)

It is worth to point out that reformulation (3.31) is linear, on the contrary of (3.30k)–
(3.30l).
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Denoting the set of dual variables of the inner problem (3.30a)–(3.30j) with Ξ′,
we can replace the inner minimization problem with its dual (see Appendix B of the
book). This renders the following problem:
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b�λo(�)

+
∑

�∈Λ|o(�)=n

b�λe(�) +
∑

�∈Λ|o(�)=n

b�

(
σ U

� − σ D
�

)

−
∑

�∈Λ|e(�)=n

b�

(
σ U

� − σ D
�

) = 0, ∀n ∈ N \ {1}, (3.32g)

σ U
� , σ D

� ≤ 0, ∀� ∈ Λ; μU
i , μD

i ≤ 0, ∀i ∈ I ; (3.32h)

εshed
j ≤ 0, ∀j ∈ J ; εspill

q ≤ 0, ∀q ∈ Q, (3.32i)

s.t. − ΔWmax
q ≤ ΔWq ≤ ΔWmax

q , ∀q ∈ Q, (3.32j)

ΔWq = ΔW+
q − ΔW−

q , ∀q ∈ Q, (3.32k)

∑
q∈Q

ΔW+
q + ΔW−

q

ΔWmax
q

≤ Γ , (3.32l)

ΔW+
q , ΔW−

q ≥ 0, ∀q ∈ Q. (3.32m)
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The following observations on model (3.32) are in order.

1. The two max operators can be merged. Therefore, (3.32) is a single maximization
problem.

2. Constraints (3.32b)–(3.32m) are linear.
3. Objective function (3.32a) is bilinear, owing to the cross products between

variables ΔWq and λn as well as ε
spill
q .

In view of the observations above, if we fix the variables in Ξ′ at their optimal value,
model (3.32) boils down to a linear programming problem in the decision variables
ΔWq , constrained by (3.32j)–(3.32m). For any linear program, at least one of the
solutions (if it exists) is a vertex of the feasible set. Since the feasible set W is
compact, at least an optimal solution of the bilinear program (3.32) is a vertex of W .

Exercises

3.1 Reformulate the auction in Example 3.3 to include two time periods. Enforce
ramping limits on the thermal generation units and analyze numerically the impact
of such limits on market outcomes. Hint: the reader is advised to consult Sect. 5.3.3.

3.2 Consider multiple Gaussian distributed wind power production scenarios in the
problem of Example 3.3. Analyze numerically the impact of increasing the number
of scenarios on market outcomes. Compare these outcomes with those obtained
considering solely the average value scenario.

3.3 Consider just two extreme scenarios (very-high wind production and no wind
production), and analyze the outcomes of the auction in Example 3.3. Compare
these outcomes with the outcomes obtained considering solely the average value
scenario. What happens as scenarios become increasingly extreme?

3.4 Analyze the market-clearing algorithm in Example 3.3 in a case in which only
wind producers are available. Study the behavior of prices, both day-ahead prices
and balancing prices.

3.5 Consider the market-clearing algorithm in Example 3.3, but involving thermal
plants with significantly high start-up costs. What happens with the clearing prices
(both day-ahead and balancing) in such situation? Hint: you can get inspiration on
how to model the start-up cost of a thermal power plant from Sect. 8.2.1 in the book.

3.6 Consider the market-clearing algorithm in Example 3.3, but involving thermal
plants with minimum power outputs. What happens with the clearing prices (both
day-ahead and balancing) in such situation? Hint: you can get inspiration from
Sect. 5.3.2 for the modeling of capacity limits.

3.7 Consider the auction in Example 3.3, and solve it for a wide range of values of
lost load. Study how market outcomes change as a result of an increasingly high
unserved-energy value.
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3.8 Consider wind production offers at non-zero price in the auction of Example 3.3.
Analyze numerically how market outcomes change as wind offering prices increase.

3.9 Reformulate the auction in Example 3.3 to include two time periods involving
highly different load levels, and a pumped storage plant. Is the availability of such
pumped storage plant beneficial? Analyze how the impact of the pumped storage
plant on market outcomes changes as the efficiency of the pumping-turbine cycle
increases. Hint: Sect. 5.5 provides insight into how to model a pumped-storage
power plant.

3.10 Reformulate the auction in Example 3.3 to include two time periods involving
highly different load levels, and a pumped storage plant. Consider that the trans-
mission line has such a low capacity that often leads to transmission bottleneck.
Analyze the ability of the pumped storage plant to alleviate the detrimental effect of
transmission bottlenecks.

3.11 Solve the robust optimization problem (3.20) considered in Example 3.6 for dif-
ferent values of the budget of uncertainty in (3.17). Start by enumerating the vertices
of the polyhedral uncertainty set. What is the effect of increasing the uncertainty
budget on the amount of dispatched reserve?

3.12 Include constraints of the following type

|ΔW1 − ΔW2| ≤ ρ

in the definition of the uncertainty set for the dispatch model based on robust opti-
mization presented in Example 3.6. Determine the uncertainty set and enumerate its
vertices, then solve the dispatch problem.

3.13 Reformulate the robust optimization model (3.20) to include two time periods
and a pumped storage plant. Consider the two-node system of Example 3.3, which
includes only one wind power plant. Introduce intervals for the deviation of wind
power production during each time period, and a budget of uncertainty to limit the
total deviation of energy production over the two periods, similarly to (3.16) and
(3.17). Analyze the effect on the robust dispatch of a storage facility with limited
capacity.
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