
Appendix B
Basics of Optimization

In this appendix, we review some basics of optimization. In Sect. B.1, we introduce
the mathematical formulation for both general and linear optimization problems.
Duality theory in linear programming is briefly presented in Sect. B.2. The Karush–
Kuhn–Tucker (KKT) optimality conditions are presented in Sect. B.3. Finally,
Mathematical Programs with Equilibrium Constraints (MPECs) are introduced in
Sect. B.4.

B.1 Formulation of an Optimization Problem

The general mathematical formulation of an optimization problem is:

Min.
x

f (x) (B.1a)

s.t. h(x) = 0, (B.1b)

g(x) ≤ 0. (B.1c)

Problem (B.1) includes the following elements:

• x ∈ R
n is a vector including the n decision variables.

• f ( · ) : R
n → R is the objective function of the optimization problem. It maps

values of the decision vector x to a real value representing the desirability of this
solution to the decision-maker. Typically the objective function represents a cost
in minimization problems or a benefit in maximization ones.

• h( · ) : R
n → R

m and g( · ) : R
n → R

l are vector-valued functions of the decision
vector x. They define m equality and l inequality constraints through (B.1b) and
(B.1c), respectively. Note that we assume that the zero-valued vectors on the
right-hand side of (B.1b) and (B.1c) are properly sized to match the dimension of
the vectors on the left-hand side.

The joint enforcement of equalities (B.1b) and inequalities (B.1c) defines the feasi-
bility region of the optimization problem. A decision x is called feasible if it satisfies
(B.1b)–(B.1c).
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The aim of problem (B.1) is to determine, among the set of feasible decisions, the
one that yields the lowest value of the objective function (B.1a).

The simplest instance of an optimization problem is a linear programming problem
(LP). This is obtained when the functions f ( · ), h( · ), and g( · ) in (B.1) are linear.
We can formulate a linear programming problem as:

Min.
x

c�x (B.2a)

s.t. AEx = bE, (B.2b)

AIx ≥ bI. (B.2c)

Note that the general functions f (·), h(·), and g(·) are replaced by affine expressions
involving the following vectors and matrices:

• c ∈ R
n is the cost coefficient of the decision vector x.

• AE ∈ R
m×n, and bE ∈ R

m define the m equality constraints (B.2b).
• AI ∈ R

l×n and bI ∈ R
l define the l linear inequality constraints (B.2c). Note that

the sign of the constraints is changed with respect to (B.1c). This is to simplify
the representation of the dual problem in the next section.

LPs model a wide variety of real-world problems, also within the area of electricity
markets. Very large LPs can be solved using commercially available software.

B.2 Duality in Linear Programming

Let us associate the vector λ ∈ R
m to the equalities (B.2b) and the vector μ ∈ R

l

to the inequalities (B.2c). The following linear maximization problem is the dual of
LP (B.2), which is referred to as the primal problem:

Max.
λ,μ

b�
E λ + b�

I μ (B.3a)

s.t. A�
E λ + A�

I μ = c, (B.3b)

μ ≥ 0. (B.3c)

The dual problem (B.3) can be considered a transposed version of the primal problem
(B.2). Indeed, the following relationships hold:

• While the primal problem (B.2) has n decision variables and m + l constraints,
the dual problem has m + l decision variables (λ and μ) and n constraints.

• The constraints (B.3b) of the dual problem involve the transposed of the matrices
AE and AI defining the constraints (B.2b)–(B.2c) of the primal problem.

• The constant vectors bE and bI on the right-hand side of the primal constraints
(B.2b)–(B.2c) form the cost coefficients of the dual linear objective function
(B.3a). Viceversa, the cost coefficient vectors c of the primal objective function
(B.2a) appear on the right-hand side of the dual constraints (B.3b).
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Table B.1 Relationships
between direction of the
optimization problem, sign of
the constraints, and bounds on
the optimization variables in
the primal and dual problems

Problem Primal Dual

Objective Minimization Objective Maximization
≥ 0 ≥ 0

Constraint type = 0 Variable bound free
≤ 0 ≤ 0
≥ 0 ≤ 0

Variable bound free Constraint type = 0
≤ 0 ≥ 0

The direction of optimization (minimization or maximization), the sign of the con-
straints (≥, =, or ≤) and the bounds on the variables (≥ 0, free, or ≤ 0) for the
primal and the dual problem are linked. Specifically, the direction of the dual opti-
mization problem is opposite to the one of the primal one. Furthermore, the signs of
the primal constraints set the bounds on the associated dual variables and, conversely,
the bounds on the primal variables set the signs of the dual constraints. Table B.1
includes all the possible combinations of constraint types and variable bounds for
a primal minimization problem, and the corresponding ones for the associated dual
maximization problem. Finally, note that the dual of the dual problem is the primal
problem, see [2]. This implies that the headers in Table B.1 can be swapped, so that
the right column pertains to a primal maximization problem and the left one to its
dual minimization one.

The objective function values of the primal and dual problems are related to each
other through the so-called weak and strong duality theorems. Such theorems are
of particular importance. In what follows, we shall present them without proof. The
interested reader is referred to [5] for further details and proofs.

Theorem B.1 (Weak Duality) If x is feasible for (B.2), and λ, μ are feasible for
(B.3), then c�x ≥ b�

E λ + b�
I μ.

Theorem B.2 (Strong Duality) If the primal problem has a finite optimal solution
x∗, so does the dual problem and at optimality it holds that c�x∗ = b�

E λ∗ + b�
I μ∗.

Since the dual of the dual problem is again the primal problem, the converse of
the previous theorems holds trivially.

Note that the dual variables λ and μ have an important economic interpretation, as
they are marginal costs. Indeed, they represent the per-unit change (increase) in the
optimal value of the objective function (B.2a) if the right-hand side of the associated
constraint is increased marginally. Naturally, μ ≥ 0. Indeed, a marginal increase of
any element of the vector bI would result in a smaller feasible space for (B.2), and
hence in a larger, i.e., worse, optimal value of the objective function.

B.3 Karush–Kuhn–Tucker Conditions

In this appendix, we only deal with KKT optimality conditions for convex problems,
and refer to [1] for a general introduction to duality theory in nonlinear programming.
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Let us consider the general formulation (B.1), and suppose that f ( · ), g( · ) are
continuously differentiable and convex, and h( · ) is affine. Furthermore, we assume
that a constraint qualification holds. For example, we may require that g( · ) be affine
(linearity constraint qualification). Another common constraint qualification requires
linear independence of the gradients of active inequality constraints and of equality
constraints. We refer the reader to specialized books on optimization, for instance
[1], for a detailed treatment of constraint qualifications.

We can define the Lagrangian function for problem (B.1) as follows:

L(x, λ, μ) = f (x) + λ�h(x) + μ�g(x). (B.4)

Under the assumptions above, the following KKT conditions are necessary and
sufficient for optimality for problem (B.1):

∇xf (x) + λ�∇xh(x) + μ�∇xg(x) = 0, (B.5a)

h(x) = 0, (B.5b)

g(x) ≤ 0, (B.5c)

μ ≥ 0, (B.5d)

μ�g(x) = 0. (B.5e)

Equations (B.5a) are stationarity conditions. Constraints (B.5b) and (B.5c) enforce
feasibility of the primal problem, while (B.5d) is a feasibility condition of the dual
problem. Finally, (B.5e) enforces complementary slackness. Note that in view of
(B.5c) and (B.5d), the scalar product on the left-hand side of (B.5e) is actually the sum
of non-positive terms only. As a result, (B.5e) implies that the element-by-element
product between μi and gi(x) is equal to 0.

Note that constraint qualifications are needed for ensuring that KKT conditions
are necessary for optimality, while convexity is needed to ensure their sufficiency.

The dual vectors λ and μ retain the interpretation of marginal costs discussed in
Sect. B.2.

Finally, the notation for constraints (B.5c)–(B.5e) can be compacted into the
following nonlinear constraint:

0 ≥ g(x) ⊥ μ ≥ 0, (B.6)

where the ⊥ (perpendicular) operator enforces the perpendicularity condition be-
tween the vectors on the left- and right-hand sides, i.e., that their element-by-element
product is equal to zero.

B.4 Mathematical Programs with Equilibrium Constraints

MPECs is a relatively recent area of optimization, which has been applied to study
electricity markets with increasing success in the recent years. In this section, we
briefly introduce the concept of MPEC and present how it can be used to model bilevel
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programs, i.e., optimization problems constrained by other optimization problems.
The reader is referred to [4] and [6] for an in-depth treatment of the subject.

The general formulation of a bilevel optimization problem is the following:

Min.
x,y

f U(x, y) (B.7a)

s.t. gU(x, y) ≤ 0, (B.7b)

hU(x, y) = 0, (B.7c)

y ∈ argmin
z

{
f L(x, z) s.t. hL(x, z) = 0, gL(x, z) ≤ 0

}
. (B.7d)

The fundamental difference between the MPEC (B.7) and the general optimization
problem (B.1) is the enforcement of conditions (B.7d). These conditions ensure that
at any feasible point (x, y) of problem (B.7), the choice of variable y is optimal for
the minimization problem within the braces in (B.7d).

Note that formulation (B.7) includes two optimization problems: an upper-level
one that aims at the minimization of f U( · ), and a lower-level one consisting in the
minimization of f L( · ).

The two problems are interdependent, since in general the upper-level objective
function (B.7a) and constraints (B.7b)–(B.7c) depend on the lower-level decision
variables y. Conversely, the objective function and the constraints of the lower-level
problem (B.7d) depend on the upper-level variable vector x.

There is a hierarchical relationship between the two problems. Indeed, the lower-
level problem is solved assuming that the upper-level decision x is fixed. On the
contrary, the upper-level problem is solved accounting for the response of the lower-
level problem to decision vector x.

Moreover, it should be emphasized that model (B.7) can accommodate several
lower-level optimization problems, simply by concatenating multiple optimality
conditions of the type of (B.7d).

Under the assumption that KKT conditions are necessary and sufficient for opti-
mality in the lower-level problem, we can employ them to replace condition (B.7d).
This results in the following formulation for the bilevel problem:

Min.
x,y,λ,μ

f U(x, y) (B.8a)

s.t. hU(x, y) = 0, (B.8b)

gU(x, y) ≤ 0, (B.8c)

∇yf
L(x, y) + λ�∇yh

L(x, y) + μ�∇yg
L(x) = 0, (B.8d)

hL(x, y) = 0, (B.8e)

gL(x, y) ≤ 0, (B.8f)

μ ≥ 0, (B.8g)

μ�gL(x, y) = 0, (B.8h)
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where λ and μ represent the dual variables associated to constraints hL(x, z) = 0
and gL(x, z) ≤ 0, respectively, in the lower-level problem (B.7d).

The advantage of formulation (B.8) is the replacement of the nested lower-level
problem with the set (B.8d)–(B.8h) of equations and inequalities, which results in a
single-level optimization problem that fits the general formulation (B.1). However,
note that solving the single-level program (B.8) is far from trivial. Indeed, KKT
conditions are in general nonlinear and non convex, as they involve cross products
between variables in the complementarity condition (B.8h).

A number of approaches for solving MPECs have been proposed in the literature.
Among these, the method presented in [3] deserves to be mentioned because of its
simplicity and its wide use in the literature on MPEC. This approach is based on the
so-called big M reformulation of the complementarity conditions (B.8h) employing
binary variables. In practice, we can replace the conditions:

μig
L
i (x, y) = 0, ∀i, (B.9)

with the following ones:

gL
i (x, y) ≥ −ziM1i , ∀i, (B.10a)

μi ≤ (1 − zi)M2i , ∀i, (B.10b)

zi ∈ {0, 1}, ∀i. (B.10c)

The use of binary variable zi forces one of the right-hand sides of (B.10a) and (B.10b)
to be equal to 0. In combination with (B.8f) and (B.8g), this implies that gL

i (x, y)
and/or μi must be equal to 0, as required by (B.8h).

For reformulation (B.10) to be valid within a bilevel problem, the constants M1i

and M2i must be large enough so as not to leave the optimal solution out of the feasible
space of (B.10). In practice, the choice of the big M constants is a rather challenging
issue, as too large values for the constants result in computational inefficiencies in
the solution of the resulting mixed-integer optimization problems.

As a final remark, it should be pointed out that if the feasible space of the lower-
level problem(s) is defined by affine equality and inequality constraints, and if the
partial derivatives of its objective function with respect to the lower-level decision
variables are also affine, reformulation (B.10) of the complementarity conditions
results in a mixed-integer linear program (MILP). Problems of this type can be
efficiently tackled by specialized software.

We refer the interested reader to [4] and [6] for a more detailed presentation of
the MPEC framework and of alternative solution techniques.
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