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ABSTRACT

Differences of opinion exist among forecasters—and between forecasters and users—regarding the meaning
of the phrase “good (bad) weather forecasts.” These differences of opinion are fueled by a lack of clarity and/
or understanding concerning the nature of goodness in weather forecasting. This lack of clarity and understanding
complicates the processes of formulating and evaluating weather forecasts and undermines their ultimate use-
fulness.

Three distinct types of goodness are identified in this paper: 1) the correspondence between forecasters’
judgments and their forecasts (type 1 goodness, or consistency), 2) the correspondence between the forecasts
and the matching observations (type 2 goodness, or quality), and 3) the incremental economic and/or other
benefits realized by decision makers through the use of the forecasts (type 3 goodness, or value). Each type of
goodness is defined and described in some detail. In addition, issues related to the measurement of consistency,
quality, and value are discussed.

Relationships among the three types of goodness are also considered. It is shown by example that the level
of consistency directly impacts the levels of both quality and value. Moreover, recent studies of quality/value
relationships have revealed that these relationships are inherently nonlinear and may not be monotonic unless
the multifaceted nature of quality is respected. Some implications of these considerations for various practices
related to operational forecasting are discussed. Changes in these practices that could enhance the goodness of
weather forecasts in one or more respects are identified.
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1. Introduction

Statements such as “that was a good forecast™ or
“that was a bad forecast™ are heard quite frequently,
both in the meteorological community and in the
community of potential users of weather forecasts. De-
spite their familiar ring, the meaning of such statements
is seldom entirely clear. In addition to practical issues
such as the way in which goodness is (or should be)
evaluated and the reliability of individual perceptions
of goodness, considerable ambiguity exists about what
constitutes a good or bad forecast in the first place.
From the forecaster’s point of view, the goodness of a
forecast is generally related—in one way or another—
to the degree of similarity between the forecast con-
ditions and the observed conditions. On the other hand,
users are primarily concerned with whether or not a
forecast leads to beneficial outcomes in the context of
their respective decision-making problems. Moreover,
goodness evidently possesses many different shades of
meaning within each of these two communities.

Although the impacts of this lack of clarity and/or
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ambiguity are not well documented, they appear to be
substantial and pervasive. For example, it is difficult
to establish well-defined goals for any project designed
to enhance forecasting performance without an un-
ambiguous definition of what constitutes a good fore-
cast. Moreover, it is essential that forecasters who for-
mulate forecasts on an operational basis possess a clear

~understanding of the nature of goodness in weather

forecasting. Otherwise, the efficiency of the forecasting
process may be compromised, the effectiveness of the
practice of forecast verification may be undermined,
and the usefulness of the forecasts themselves may be
adversely affected. For these and other reasons, clari-
fication of the nature of goodness in this context ap-
pears to be a very worthwhile objective.

In this expository paper we identify three distinct
ways in which a forecast can be good (bad). These
three types of goodness can be described briefly as fol-
lows: (a) a forecast is good in the type 1 sense if it
corresponds to the forecaster’s best judgment derived
from her (forecasters are assumed to be feminine in
this paper) knowledge base; (b) a forecast is good in
the type 2 sense if the forecast conditions correspond
closely to the observed conditions at (or during) the
valid time of the forecast; and (¢) a forecast is good in
the type 3 sense if the forecast, when employed by one
or more users as an input into their decision-making
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processes, results in incremental economic and/or
other benefits. Type 2 goodness and, to a lesser extent,
type 3 goodness are familiar concepts to most weather
forecasters, at least in their broad outlines. However,
many forecasters may not be familiar with the concept
of consistency or with the nature of the relationships
that exist among these three types of goodness.

The primary purposes of this paper are to describe
the three types of goodness, to clarify the nature of
good and bad forecasts in each sense, and to discuss
the relationships among these types of goodness. Be-
cause type 1 goodness is not a familiar concept, par-
ticular attention is devoted to the development of this
concept and to a discussion of the relationships between
type 1 goodness and the other two types of goodness.
Sections 2, 3, and 4 describe type 1, type 2, and type
3 goodness, respectively. The relationships among the
three types of goodness are considered in section 5.
Section 6 discusses the implications of these concepts
for practices related to operational weather forecasting
and identifies possible beneficial changes in these prac-
tices. This section also contains some concluding re-
marks.

2. Type 1 goodness: Consistency

It is assumed here that forecasters derive their fore-
casts concerning future weather conditions from a
knowledge base. This knowledge base consists of var-
ious sources or types of information. The latter include
observations and analyses of many different types; nu-
merical, statistical, and conceptual models; the output
of these models; previous forecasting experience; and
feedback regarding prior forecasting performance.

Moreover, we assume that the forecasting process,
as performed by a forecaster, culminates in the for-
mulation of judgments regarding future values of
weather variables or the occurrence /nonoccurrence of
future weather events. These judgments are based on
the forecaster’s rational distillation of the information
contained in her knowledge base. (As a result, they are
sometimes referred to here as the forecaster’s “best
judgments.”) The judgments are internal to the fore-
caster in the sense that they are by definition recorded
only in the forecaster’s mind. To distinguish between
these internal assessments and the forecaster’s external
(i.e., spoken or written) statements regarding future
weather conditions, the former are referred to as judg-
ments and the latter are referred to as forecasts.

Even though the forecaster’s judgments are not
available for evaluation, it is reasonable to postulate
that they must by their very nature satisfy certain con-
ditions. For example, the judgments must be consistent
with the current state of the art of weather forecasting,
as well as with the forecaster’s knowledge base on those
occasions on which they are formulated. Among other
things, such considerations determine the spatial and
temporal specificity of the judgments. Moreover, the
fact that the forecaster’s knowledge base is necessarily
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incomplete—and imperfect in other respects—implies
that the forecasting process contains an inherent ele-
ment of uncertainty. The forecaster’s judgments should
reflect this uncertainty, which generally varies from
occasion to occasion, event to event, location to lo-
cation, etc. (On the other hand, we need not be con-
cerned here with the way in which this uncertainty is
characterized in the judgments. For example, it could
be described qualitatively or quantitatively.) In sum-
mary, a forecaster’s judgments on a particular occasion
are assumed here to contain al/ of the information in
her knowledge base on this occasion that relates to the
future weather conditions of interest.

Since a forecaster’s judgments are the result of a ra-
tional process of assimilation and distillation of the
information contained in her knowledge base, it may
seem reasonable to require that the forecasts—which
represent the external manifestation of the judg-
ments—correspond to the judgments. However, users
of forecasts—both individually and collectively—may
not require all of the information contained in the
judgments. With these considerations in mind, it is
useful here to introduce the concept of a requisite fore-
cast. A requisite forecast contains all of the information
that potential users require to act optimally in the con-
text of their respective decision-making problems.
Hereafter, we focus our attention on requisite forecasts,
and the term “forecasts” should be understood to be
synonymous with “requisite forecasts.”

What is the appropriate relationship between a (reg-
uisite) forecast and a forecaster’s judgment? Here this
relationship is expressed in the form of a basic maxim
of forecasting; namely, a (requisite) forecast should al-
ways correspond to a forecaster’s best judgment. Of
course, some information needed by one or more users
may not be included in the forecaster’s judgment (e.g.,
it may not be possible for a forecaster to produce a
particular kind of information given the current state
of the art of weather forecasting). Nevertheless, the
forecast should be consistent with the information that
is contained in the judgment. Otherwise, such a forecast
would neither properly reflect the forecaster’s true state
of knowledge nor completely satisfy users’ needs. This
maxim seems quite reasonable, in the sense that the
overall goal of forecasting systems presumably is 1o
provide the best and most appropriate information
available to potential users of weather forecasts.

It should be noted that the conditions that determine
what constitutes a requisite forecast generally vary from
user to user. Thus, a requisite forecast provided to
multiple users must satisfy the union of their infor-
mation requirements. To design such forecasts in a
rational manner, it is necessary to obtain detailed in-
formation about the users and uses of the forecasts.
Unfortunately, such information is seldom if ever
readily available to forecasters or others in the opera-
tional meteorological community. For further discus-
sion of this and other issues related to requisite fore-
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casts, as well as trade-offs related to the content and
mode of expression of forecasts, see section 6.

The concept of type 1 goodness, as set forth in this
paper, is derived from the aforementioned maxim. A
requisite forecast is good in the type 1 sense if the fore-
cast corresponds to the relevant judgment, and we use
the term consistency to describe this characteristic of
forecasts. For the convenience of the reader, a short
definition of type 1 goodness (and the other two types
of goodness) is included in Table 1.

A (requisite) forecast can be inconsistent with the
underlying judgment in several different ways. For ex-
ample, it may contain more or less spatial or temporal
specificity than the judgment. We will focus our atten-
tion here primarily on one particular type of inconsis-
tency: namely, the inconsistency that arises when the
uncertainty inherent in forecasters’ judgments is not
properly reflected in their forecasts. Since forecasters’
judgments necessarily contain an element of uncer-
tainty, their forecasts must reflect this uncertainty ac-
curately in order to satisfy the basic maxim of fore-
casting. In general, then, forecasts must be expressed
in probabilistic terms. (It is not necessary here to ad-
dress or resolve the thorny—and sometimes contro-
versial—issue as to whether words or numbers should
be used to describe this uncertainty.) However, simply
expressing a forecast in probabilistic terms does not by
itself guarantee that the highest level of type 1 goodness
has been achieved. In addition, the degree of uncer-
tainty expressed in the forecast must correspond with
that embodied in the relevant judgment.

For example, suppose that a forecaster’s best judg-
ment concerning the likelihood of occurrence of pre-
cipitation on a particular occasion, based on her
knowledge base, 1s 0.2. (For concreteness, the individ-
ual is assumed to “record” her judgment in terms of
a numerical probability.) If the forecaster reports a
probability of 0.2, then her forecast has attained the
highest level of type 1 goodness. On the other hand,
suppose that the forecaster reports a probability of 0.4,
because she perceives (incorrectly) that this forecast
will maximize or minimize, whichever is appropriate,
the value of the verification measure used to evaluate
the forecast, or because of the perceived adverse im-
pacts of issuing a forecast that would imply the con-
tinuation of a prolonged dry spell. Clearly, consistency

TaBLE 1. Names and short definitions of three types of goodness.

Type Name Definition
1 Consistency Correspondence between forecasts
and judgments
2 Quality Correspondence between forecasts
and observations
3 Value Incremental benefits of forecasts

1o users
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has not attained its highest possible level in this case.
Inconsistencies of a spatial or temporal nature could
arise in this context if a forecaster reported a single
overall precipitation probability on an occasion on
which her judgment indicated that the likelihood of
occurrence of precipitation varied significantly over the
local forecast area or during the valid period of the
forecast. In any case, it should now be obvious that
expressing forecasts in a nonprobabilistic (i.e., cate-
gorical ) format generally is a decidedly inferior strategy,
in terms of achieving high levels of consistency. Re-
lationships between the level of type 1 goodness and
the levels of the other two types of goodness are dis-
cussed in section 5.

Since a forecaster’s judgments are, by definition, in-
ternal to the forecaster and unavailable for explicit
evaluation (see Winkler and Murphy 1968), the degree
of correspondence between judgments and forecasts
cannot be assessed directly. However, various devices
such as lotteries involving hypothetical bets and proper
scoring rules can be used to encourage a high level of
type 1 goodness, at least in the sense that the uncer-
tainty inherent in the judgments is accurately reflected
in the forecasts (Winkler and Murphy 1968). For ex-
ample, strictly proper scoring rules are defined in such
a way that forecasters are rewarded with the best (ex-
pected ) scores if and only if their forecasts correspond
with their judgments (see Murphy and Winkler 1971;
Winkler and Murphy 1968). The Brier score (Brier
1950) and the ranked probability score (Epstein 1969;
Murphy 1971), two common measures of the accuracy
of probabilistic forecasts, are strictly proper scoring
rules and thus also serve the purpose of encouraging
high levels of type | goodness. An example of the way
in which a strictly proper scoring rule promotes a high
level of type 1 goodness is included in section 5a.

It is important to recognize that type 1 goodness is
largely under the control of the forecaster (except for
any constraints that may be imposed on the format,
length, etc., of the forecasts—see section 5a). Thus, it
1s generally possible for forecasters to achieve very high
levels of consistency simply by making their forecasts
correspond with their judgments. In this sense, type 1
goodness differs from the other two types of goodness.

3. Type 2 goodness: Quality

Goodness in the type 2 sense relates to the degree
of correspondence between forecasts and observations.
Here, we refer to this type of goodness as quality (see
Table 1). Thus, forecasts of high quality exhibit a close
correspondence with the observations. To fully appre-
ciate the nature of type 2 goodness and the problems
associated with its measurement, it is necessary to de-
scribe briefly the current status of forecast verification,
the process by which forecast quality is evaluated.

Traditionally, forecast verification has consisted of
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the computation of measures of the overall correspon-
dence between forecasts and observations (e.g., see
Murphy and Daan 1985; Stanski et al. 1989). Prom-
inent examples of such measures include the mean ab-
solute error, the mean-square error, and various skill
scores. This traditional, measures-oriented approach
has tended to focus on one or two overall aspects of
forecast quality, such as accuracy and skill.

It is useful here to contrast the measures-oriented
approach with the recently developed distributions-
oriented approach. The latter is based on the notion
that the joint distribution of forecasts (denoted by f)
and observations (denoted by x), p(f, x), contains all
of the non-time-dependent information relevant to
evaluating forecast quality (see Murphy and Winkler
1987). Moreover, the information contained in the
joint distribution becomes more accessible when
p(f, x) is factored into conditional and marginal dis-
tributions. These distributions include the conditional
distributions of the observations given the forecasts
[p(x |f)—a conditional distribution exists for each
value of /], the conditional distributions of the forecasts
given the observations [p(f| x)—a conditional distri-
bution exists for each value of x], the marginal distri-
bution of the forecasts [p(f)], and the marginal dis-
tribution of the observations [p(x)]. It is the totality
of the information contained in these distributions that
constitutes forecast quality in its fullest sense.

The perspective provided by the distributions-ori-
ented approach reveals that forecast quality is inher-
ently multifaceted in nature. For example, aspects of
quality generally referred to as reliability and resolution
can be assessed by examining the conditional distri-
butions p(x |f) and the marginal distribution p(f).
Reliability relates to the correspondence between the
mean of the observations associated with a particular
forecast (X;) and that forecast (f), averaged over all
forecasts. Evaluation of reliability can provide answers
to the following questions: Does the mean observed
temperature on those occasions on which the forecast
temperature is 80°F correspond to this forecast? Is the
relative frequency of precipitation on those occasions
on which the precipitation probability forecast is 0.3
equal to this probability? Clearly, small differences be-
tween Xrand fare preferred to large differences. To aid
the reader, short definitions of reliability and the other
aspects of quality considered here are included in Table
2. This table also identifies the basic distribution(s)
associated with each aspect of quality.

Resolution relates to the difference between this
same conditional mean observation (X;) and the overall
unconditional mean observation (X), again averaged
over all forecasts (see Table 2). A relevant question
here might be as follows: To what extent do the con-
ditional means of the observations corresponding to
temperature forecasts of 60° and 80°F differ from each
other and from the overall mean observation? In this
case, large differences are preferred to small differences,
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TABLE 2. Short definitions and relevant distributions for various
aspects of forecast quality.

Relevant

Aspect Definition distribution(s)

Bias Correspondence between
mean forecast and mean
observation

Overall strength of linear
relationship between
individual pairs of
forecasts and observations

Average correspondence
between individual pairs
of forecasts and
observations

Accuracy of forecasts of
interest relative to
accuracy of forecasts
produced by standard of
reference

Correspondence between
conditional mean
observation and
conditioning forecast,
averaged over all forecasts

Difference between
conditional mean
observation and
unconditional mean
observation, averaged
over all forecasts

Variability of forecasts as
described by distribution
of forecasts

Correspondence between
conditional mean forecast
and conditioning
observation, averaged
over all observations

Difference between
conditional mean forecast
and unconditional mean
forecast, averaged over all
observations

Variability of observations as
described by distribution
of observations

p(S) and p(x)

Association

p(fs %)

Accuracy

p(f, x)

Skill p(f, x)

Reliability p(x|f)and

p(f)

p(x1f)and
r(f)

Resolution

p(f)

Sharpness

p(f|x) and
px)

Discrimination 1

p(flx) and
p(x)

Discrimination 2

Uncertainty p(x)

since the latter indicate that, on average, different fore-
casts are followed by different observations.

The conditional distributions p(f'| x) provide insight
into other aspects of quality, which are collectively re-
ferred to under the label discrimination. Roughly
speaking, these aspects of quality relate to the ability
of the forecasts to discriminate among the observations
(see Table 2). In the case of precipitation probability
forecasts, for example, discrimination is relatively
strong if high probabilities are used on most occasions
when precipitation occurs (x = 1), and low probabil-
ities are used on most occasions when precipitation
does not occur (x = 0). Weak discrimination would
be represented by a situation in which these two con-
ditional distributions, p(f|x = 1) and p(f|x = 0),
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largely coincide with each other. Measures of discrim-
ination are concerned with the correspondence between
the mean forecast for a particular observation (f,) and
that observation (x), as well as with the difference be-
tween this same conditional mean forecast (f,) and the
overall unconditional mean forecast (). Good dis-
crimination is represented by small differences between
Jx and x and by large differences between f, and f.

The marginal distribution p(f), by itself, relates to
the sharpness of the forecasts (see Table 2). In the case
of precipitation probability forecasts, the forecasts are
relatively sharp if forecast probabilities near zero and
one are used on most occasions. On the other hand,
forecast probabilities equal to the climatological prob-
ability are completely lacking in sharpness. Sharpness
and resolution become identical aspects of quality when
the forecasts of interest are completely reliable (i.e.,
when x;= fforall f).

The marginal distribution p(x) relates to the uncer-
tainty associated with the forecasting situation (see Ta-
ble 2). A situation in which the events are approxi-
mately equally likely is indicative of relatively high un-
certainty, whereas a situation in which one or two
events predominate is indicative of relatively low un-
certainty. Although this aspect relates to the forecasting
situation rather than to the forecasts, the level of un-
certainty can have a substantial impact on other aspects
of quality (e.g., skill). In this sense, uncertainty can be
viewed as closely related to the concept of forecast dif-
ficulty. For further discussion of the various aspects of
quality, see Murphy and Winkler (1987).

A distributions-oriented approach avoids many of
the pitfalls inherent in the measures-oriented approach
and provides a coherent framework for the verification
process. Recently, efforts have been made to assemble
a diagnostic body of methods consistent with the dis-
tributions-oriented approach to forecast verification
and the multifaceted nature of forecast quality. These
methods have been applied to different types of weather
forecasts in two recent studies (see Murphy et al. 1989;
Murphy and Winkler 1992).

To this point, we have focused on the problem of
assessing the level of type 2 goodness of a single set of
forecasts. The deficiencies associated with the mea-
sures-oriented approach become even more evident
when the problem of comparing the quality of two (or
more) sets of forecasts is confronted. Traditionally,
relative forecasting performance has been assessed by
comparing the magnitudes of one or two overall mea-
sures of accuracy or skill. However, it is relatively easy
to show that this approach neither guarantees that the
forecasts with the better score(s) are of higher quality—
in all aspects of its multifaceted nature—nor ensures
that the better forecasts are of greater value to all users
(e.g., see Murphy and Ehrendorfer 1987).

To avoid these shortcomings, it is necessary to per-
form comparative evaluation within an appropriate
framework. In the case of two sets of forecasts (denoted

MURPHY

285

here by fand g), the basic elements of such a frame-
work are the joint distributions p(f, x) and p(g, x).
(For simplicity, it has been assumed here that both sets
of forecasts are made for the same variable or event on
the same set of forecasting occasions.) Thus, we are
concerned in this context with the conditional and
marginal distributions that can be obtained from fac-
torizations of p(f, x) and p(g, x), as well as with the
comparison of the various aspects of quality associated
with these joint, conditional, and marginal distribu-
tions. Clearly, comparative evaluation is a complex
problem, and it is beyond the scope of this paper to
pursue these complexities in detail.

However, we might ask what general conditions
must be satisfied to ensure that the forecasts fare better
in all respects than the forecasts g. These conditions
are embodied in a statistical relationship referred to as
the sufficiency relation, which depends on the char-
acteristics of p(f'| x) and p(g| x) (see Ehrendorfer and
Murphy 1988). When f’s forecasts can be shown to
be sufficient for g’s forecasts, according to this relation,
the former exhibit greater type 2 goodness than the
latter in all relevant respects. Moreover, under these
conditions, f’s forecasts also possess greater type 3
goodness than g’s forecasts. That is, all users regardless
of the nature of their decision-making problems will
find /s forecasts more useful than g’s forecasts. Thus,
the sufficiency relation can produce very powerful re-
sults. Unfortunately, it is not always possible to show
that /s forecasts are sufficient for g’s forecasts, or vice
versa (i.e., application of the sufficiency relation may
indicate that /s forecasts are not sufficient for g’s fore-
casts and that g’s forecasts are not sufficient for f’s
forecasts). The practical utility of this relation as a
means of comparing the quality—and value-—of dif-
ferent sets of forecasts is currently under investigation
in various meteorological contexts (e.g., see Ehren-
dorfer and Murphy 1992; Krzysztofowicz 1992;
Krzysztofowicz and Long 1991; Murphy and Ye 1990).

Unlike type 1 goodness, type 2 goodness is not en-
tirely under the control of the forecaster. The forecaster
can decide what to forecast and how to express the
forecast, but the observations with which the forecasts
are compared cannot be controlled. The forecaster’s
best strategy is to make effective use of the information
contained in her knowledge base and to express the
forecasts in a manner consistent with her judgments.
Under these conditions, the forecasts should represent
the forecaster’s best possible assessments of the likeli-
hood of occurrence of the future observations.

4. Type 3 goodness: Value

The goodness of forecasts in the type 3 sense relates
to the benefits realized—or expenses incurred—Dby in-
dividuals or organizations who use the forecasts to
guide their choices among alternative courses of action.
Type 3 goodness is referred to here as value (see Table
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1). In this section we consider the nature of forecast
value and briefly discuss some basic issues related to
its measurement.

First, it should be understood that forecasts possess
no intrinsic value. They acquire value through their
ability to influence the decisions made by users of the
forecasts. Various methods are available to estimate
forecast value—these methods include descriptive
analyses involving studies of the behavior of weather-
information-sensitive users and prescriptive analyses
based on decision-analytic and/or econometric models
(see Katz and Murphy 1993). Moreover, forecast value
may be measured in a variety of different units. For
example, it may be measured in terms of monetary
benefits or expenses or in terms of nonmonetary gains
or losses (e.g., lives saved or lost). For the purposes of
this discussion, we will assume that forecast value is
measured in (or translated into) monetary units.

In examining and describing the results of forecast-
value studies, it is important to distinguish between ex
post and ex ante approaches to value-of-information
assessment. The ex post approach consists of deter-
mining the actual value of the forecasts after the fore-
casts and observations have become available. In this
approach the forecasts are taken at face value, in the
sense that users are assumed to base their decisions on
the information as specified in the forecasts. Thus, ex
post forecast-value estimates relate to the (actual) value
of a set of forecasts that have been made in the past.

The ex ante approach, on the other hand, is con-
cerned with determining the expected value of the
forecasts before the forecasts and observations have
become available. This approach, which is consistent
with decision-analytic methods of analyzing decision-
making problems (e.g., see Winkler and Murphy
1985), involves recalibration of the forecasts on the
basis of the observations. That is, the decision maker
is assumed to base his choice of an optimal course of
action on the conditional distributions of the obser-
vations given the possible forecasts. Thus, ex ante fore-
cast-value estimates relate to the (expected) value of a
set of forecasts that may be made in the future.

From the perspective of this paper, perhaps the most
important practical consequence of the differences be-
tween these two approaches relates to the value-of-in-
formation estimates themselves. In the ex post ap-
proach, forecast value can be positive or negative, with
forecasts of very high quality generally realizing positive
value and forecasts of very low quality possibly realizing
negative value. However, in the ex ante approach, the
process of recalibration transforms low-quality forecasts
into high-quality forecasts. (In two-event situations,
for example, forecasts that are always incorrect are
translated into forecasts that are always correct.) As a
result, forecast value in the ex ante approach is always
nonnegative. For further discussion of the ex post and
ex ante approaches to value-of-information assessment,
see Murphy (1985).
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The ex post approach was adopted in many early
studies of the value of weather forecasts, most of which
were undertaken in the context of the cost-loss ratio
situation (e.g., see Thompson 1952; Thompson and
Brier 1955). These studies demonstrated (inter alia)
that forecasts based solely on climatological probabil-
ities can be of greater value than relatively inaccurate
nonprobabilistic forecasts. Subsequent investigations
based on this approach revealed that reliable proba-
bilistic forecasts generally are of greater value than
nonprobabilistic forecasts (Murphy 1977; see also
Thompson 1962).

Recently, most studies of the value of weather and /
or climate forecasts have been based on an ex ante
approach (see Sonka et al. 1986; Winkler and Murphy
1985; Winkler et al. 1983). Four determinants of type
3 goodness have been identified in this context (Hilton
1981): (a) the courses of action available to the decision
maker, (b) the payoff structure (e.g., benefits or ex-
penses) associated with the decision-making problem,
(c) the quality of the information used as a basis for
decision making in the absence of the forecasts, and
(d) the quality of the forecasts. Determinants (a) and
(b) relate to characteristics of the decision-making
problem (and/or the decision maker). Thus, forecast
value generally varies from problem to problem and
from user to user within a specific problem. For ex-
ample, forecast-value estimates generally differ among
users who, although they rely on the same forecasts,
are faced with decision-making problems that exhibit
different characteristics (i.e., different sets of actions
and/or different payoff structures).

The fact that forecast quality is a determinant of
forecast value is hardly a surprise. (The complex re-
lationship between quality and value is discussed in
section 5c.) However, determinants (¢) and (d), taken
together, highlight an important but sometimes over-
looked feature of forecast-value estimates. These esti-
mates represent the incremental benefits realized by
users when their decisions are made with the aid of
forecasts. In the case of users whose payoff functions
are linear in monetary benefit (or expense), these in-
cremental benefits are measured as the difference be-
tween the users’ expected payoffs when decisions are
made with and without the forecasts. Thus, a single set
of forecasts can lead to quite different value estimates,
even in the case of two individuals faced with the same
decision-making problem, if these individuals have ac-
cess to different types of information in the absence of
the forecasts. In effect, the availability of different non-
forecast information sources means that the decision
makers’ forecast-value scales possess different zero
points.

Several prescriptive studies of the ex ante value of
weather and/ or climate forecasts have been conducted
in recent years. These studies have involved prototyp-
ical decision-making problems such as the cost-loss
ratio situation (e.g., Katz and Murphy 1987, 1990),
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as well as real-world decision-making problems such
as the fruit frost, fallowing-planting, corn production,
and choice-of-crop situations (e.g., Brown et al. 1986;
Katz et al. 1982; Mjelde et al. 1988; Wilks and Murphy
1986). Both single-stage (static) and multiple-stage
(dynamic) models have been employed in these studies,
and quantitative estimates of the value of short-range
and long-range forecasts have been obtained in various
contexts. Nevertheless, these studies have only
scratched the surface of the extensive body of actual
and potential users of such forecasts. Moreover, pre-
scriptive studies of this type should be accompanied,
whenever possible, by descriptive analyses (e.g., see
Stewart et al. 1984), in which the information-pro-
cessing and decision-making procedures of individual
users are monitored and evaluated in the field. Among
other things, descriptive analyses provide information
that can be used to evaluate the models and assump-
tions on which prescriptive studies—and ex ante fore-
cast-value estimates—are based.

Clearly, the level of type 3 goodness is not under the
forecaster’s control. The determinants of forecast value
reveal that it is influenced by various characteristics of
users’ decision-making problems (i.e., courses of action,
payoff structure, information available in the absence
of forecasts) as well as by the level of type 2 goodness
(quality). Thus, a forecaster can do no better than pro-
vide the best possible forecasts consistent with her
knowledge base and judgments. Such forecasts may
attain relatively high levels of type 3 goodness in the
cases of some users, but other users (because of the
characteristics of their decision-making problems) may
find such forecasts of little or no value.

5. Relationships among consistency, quality, and
value

Relationships exist among all three types of good-
ness. Specifically, consistency directly influences both
quality and value. In addition, as already noted in sec-
tion 4, forecast quality is a determinant of forecast
value. The nature of these relationships is explored in
this section.

a. Consistency and quality

The nature of the relationship between consistency
and quality can be described by means of an example.
Consider a forecaster who has arrived at a judgment p
(0 < p < 1) regarding the occurrence of an event in a
dichotomous situation (e.g., precipitation/no precip-
itation, frost/no frost). Here, the judgment is assumed
to describe the uncertainty inherent in the forecasting
process, in the sense that p represents the forecaster’s
best assessment regarding the likelihood of occurrence
of this event, as characterized by her knowledge base.
Further, suppose that the overall quality of the forecast
is to be evaluated in terms of the half Brier score, BS,
where

MURPHY

287

BS = (f— x)?, (D

in which f denotes the forecast (0 < f< 1) and x
denotes the observation (x = 1 if the event occurs, x
= () if the event does not occur). What forecast fshould
be given by the forecaster in order to minimize her
expected score? (Recall that the BS has a negative ori-
entation, in the sense that smaller scores generally are
better. It is necessary to consider expected scores, rather
than actual scores, in this context because the decision
regarding the value of f must be made before it is
known whether or not the event has occurred.)

If the forecaster reports a forecast f, then she will
receive a score BS, = (f— 1)? if the event occurs (x
= 1) and a score BS, = f? if the event does not occur
(x = 0). Thus, the forecaster’s expected score is EBS,
where

EBS = pBS, + (1 — p)BS,, (2)

since p and 1 — p represent her best judgments regard-
ing the likelihood of obtaining the scores BS; and BS,,
respectively. Substituting the expressions for BS; and
BS, into (2) yields

EBS = p(f— 1)+ (1 —p)f>. (3)

What choice of f minimizes the expression for the
EBS in (3)? When p? is added and subtracted from
the right-hand side of (3), this expression can be re-
written as

EBS = p(1 —p) + (f— p)*. (4)

It is clear that the EBS in (4) is minimized by choosing
/ = p; that is, by making the forecast correspond ex-
actly with the judgment. Moreover, any choice of ffor
which f # p increases the value of the EBS—a result
that is undesirable from the forecaster’s point of view.
The fact that the choice f = p minimizes the EBS
demonstrates that the BS is a strictly proper scoring
rule (see Murphy and Daan 1985; Winkler and Murphy
1968).

To provide further insight into the behavior of the
EBS, it is plotted as a function of ffor selected values
of p in Fig. 1. As noted in the previous paragraph, the
EBS attains its minimum value for a particular judg-
ment p when the forecast fequals p. Larger—and less
desirable—expected scores are obtained as the differ-
ence between fand p increases. The largest values of
the EBS for p < (>) % arise when f = 1 (0). Thus,
forecasts that ignore the uncertainty inherent in the
Jjudgments—so-called nonprobabilistic (or categorical)
forecasts—yield the largest and least desirable expected
scores.

This example, which can be readily generalized to
situations involving n > 2 events, provides a graphic
illustration of the nature of the relationship between
consistency and quality. Clearly, failure to maintain a
high level of consistency, in the sense of ensuring that
the forecasts accurately reflect the uncertainty inherent
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Fi1G. 1. The expected half Brier score EBS plotted as a function of
the forecast probability f, for selected values of the judgmental prob-
ability p.

in the judgments, can adversely affect (expected) fore-
cast quality. Assessment of the impacts of other types
of inconsistencies on forecast quality, such as incon-
sistencies in spatial and/or temporal specificity, must
await the development of procedures designed to ac-
commodate and evaluate these inconsistencies. In any
case, it should be evident that placing arbitrary restric-
tions on the content, format, etc., of forecasts may in-
troduce inconsistencies that detract from their quality.
The pros and cons of such restrictions need to be
weighed very carefully (see section 6).

b. Consistency and value

As in the case of the relationship between type 1 and
type 2 goodness, the nature of the relationship between
consistency and value can be described by means of
an example. Consider a decision maker in the cost-
loss ratio situation (Thompson 1962; Murphy 1977)
who must decide whether or not to protect an activity
or operation in the face of uncertainty regarding the
occurrence of adverse weather. If the decision maker
protects, a cost of protection C is incurred and the
activity is completely protected. On the other hand, if
protective action is not taken and adverse weather oc-
curs, then the decision maker suffers a loss L (L > C).
If protective action is not taken and adverse weather
does not occur, no expense (cost or loss) is incurred.
Let r denote the decision maker’s a priori probability
of adverse weather (in which case 1 — r denotes the a
priori probability of no adverse weather). If protective
action is taken, the decision maker’s expected expense
is EE(protect) = rC + (1 — r)C = C. On the other
hand, if protective action is not taken, the decision
maker’s expected expense is EE (do not protect) = rL
+ (1 — r)0 = rL. It is then easy to see that a decision
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maker who wants to minimize expected expense will
protect if r > C/L and will not protect if r < C/L
(hence the name “cost-loss ratio situation”).

Now suppose that 1) a forecaster provides the de-
cision maker with forecasts related to the occurrence/
nonoccurrence of adverse weather; 2) the decision
maker adopts—and uses—the forecasts as a basis for
choosing between the two possible actions; and 3) at-
tention is focused on the decision maker’s expected
expense from the perspective of the forecaster. (In ef-
fect, the latter amounts to an assumption that the de-
cision maker’s expected expense can be interpreted as
an expected score assigned to the forecast.) Once again,
we will assume that the forecaster’s best judgment is
denoted by p and that her forecast is denoted by f. (In
this case, p and frefer to the likelihood of occurrence
of adverse weather.) What value of fshould be selected
by the forecaster?

Suppose that p < C/L, and assume for the moment
that the forecaster chooses to make her forecast cor-
respond to her judgment (i.e., f = p). Then the ex-
pected expense is EE(f) = EE(p), where

EE(p) = pL + (1 — p)0 = pL. (5)

In fact, any choice of f < C/L leads to this same ex-
pected expense. (The choice of the optimal action is
based on the forecast £, but the likelihood of occurrence
of the events given that action is specified by the judg-
ment p.) In all such cases, EE(f) = EE(p) = pL. How-
ever, suppose that the forecaster chooses f > C/L.
Then,

EE(f)=pC+ (1 —p)C=C. (6)

Since p < C/L, it follows from a comparison of (5)
and (6) that EE(f) > EE(p). That is, if the forecaster
reports a value of /> C/L when p < C/L, then the
decision maker’s expected expense is larger than it
would have been if the forecaster had reported a value
of f < C/L. From the forecaster’s perspective, this
difference in expected expense translates directly into
an inferior expected score.

An analogous situation arises when p > C/L, and
it yields similar results. In this situation, EE(f) = EE(p)
=Cif f>C/L,but EE(f) =pL>EE(p)=Cif f
< C/L. It is now evident that the expected expenses,
interpreted as expected scores, define a proper (but not
strictly proper) scoring rule. That is, the choice f = p
achieves the minimal expected score, but some f # p
also obtain this same expected score. These results are
illustrated in a schematic diagram in Fig. 2, in which
expected expense is plotted against the forecast fwhen
p=0.1<C/L = 0.3 (Fig. 2a) and when p = (.5
> C/L = 0.3 (Fig. 2b). In Fig. 2a, any choice of f
< C/L = 0.3 leads to the same expected expense per
unit loss—namely, EE*(f) = EE(f)/L =p = 0.1—
as the choice f = p. However, choosing f > C/L =
0.3 leads to a greater expected expense per unit loss—
namely, EE*( f) = C/L = 0.3. Analogous results can
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FI1G. 2. Expected expense per unit loss, EE*(f) = EE(f)/L, in
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be gleaned from Fig. 2b; any choice of /> C/L = 0.3
leads to the same expected expense [EE*(f) = C/L
= 0.3] as the choice f = p, but choosing f < C/L =
0.3 leads to a greater expected expense [EE*(f) = p
=0.5].

What do these results tell us about the relationship
between consistency and value? They seem to imply
that this relationship is weaker than that between con-
sistency and quality. To minimize expected expense it
is necessary only that the forecast ffall on the same
side of the cost-loss ratio as the judgment p (i.e., either
f < C/L when p < C/L, or f > C/L when p
> C/L). Evidently, it is not necessary that the forecast
correspond exactly to the judgment to achieve the best
expected score. However, it is important to recognize
that these results relate to a particular decision maker
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with a known cost-loss ratio. In the real world, fore-
casters generally possess little if any first-hand knowl-
edge of decision makers’ cost-loss ratios. Moreover,
individual forecasts are frequently used by many de-
cision makers who presumably possess different cost—
loss ratios. In fact, in the absence of information to the
contrary, it must be assumed that decision makers exist
for all values of the cost-loss ratio (0 < C/L < 1).
Under these circumstances, the only forecast that en-
sures that no decision maker will experience an un-
necessary increase in expected expense—and that the
forecaster will realize the best expected score—is the
forecast f = p.

It is also of interest in this context to consider the
consequences, for prospective users of forecasts, when
a forecaster chooses a forecast f # p. The expected
expenses of decision makers whose values of C/ L fall
outside of the interval between f and p will not be
affected, since both the forecast and the judgment lead
to the same decision. However, decision makers whose
cost-loss ratios fall in this interval will experience in-
creases in expected expense, because their decisions
based on fwould be different than their decisions based
on p. This situation is illustrated in Fig. 3, in which
the difference in expected expense per unit loss—
namely, AEE* = EE*( f) — EE*( p)—is plotted against
C/L. Note that AEE* = 0 outside of the interval be-
tween fand p but that AEE* > 0 inside this interval.
The larger the difference between fand p, the more
users are adversely affected and the greater the mag-
nitude of the adverse impact. Choosing /= 0 or f =
l—extreme choices in which the uncertainty in the
judgment p is ignored when the forecast is reported—
maximizes the number of users who will experience
increases in their expected expenses.

¢. Quality and value

Since forecast quality is a determinant of forecast
value (see section 4), the fact that a relationship exists
between type 2 and type 3 goodness is hardly surprising.
However, the nature of the concepts of quality and
value dictates that the quality/ value relationship is both
complex and user specific. The discussion of this re-
lationship here is limited to a brief overview of some
recent results, including an example intended to illus-
trate that quality/value “reversals” can occur when
relevant aspects of quality are overlooked.

Quality/value relationships have been investigated
in detail in both prototypical and real-world situations
using an ex ante approach (e.g., see Brown et al. 1986;
Katz and Murphy 1990; Katz et al. 1982). These stud-
ies have shown (inter alia) that this relationship is in-
herently nonlinear and generally differs from situation
to situation (e.g., from decision-making problem to
decision-making problem, and from user to user within
a specific decision-making problem). Specifically, a
quality threshold exists in many situations, with the
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forecasts of interest possessing no value until this level
of quality is exceeded. Above this threshold, value usu-
ally increases nonlinearly as quality increases.
However, if aspects of forecast quality that influence
a decision maker’s choice of an optimal action are ig-
nored in the process of measuring type 2 goodness,
then even the monotonic relationship that generally is
assumed to exist between quality and value may be
violated. Murphy and Ehrendorfer (1987) investigated
the relationship between forecast accuracy and forecast
value in the context of the cost-loss ratio situation with
this particular problem in mind. In their study forecast
quality was measured by the expected half Brier score
(EBS) and forecast value was measured by the differ-
ence in expected expense when decisions were made
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with and without the aid of the forecasts (VF). (In the
latter case, decisions were based on climatological
probabilities.)

The accuracy/ value relationship in this context for
a particular set of values of the basic parameters is de-
picted in Fig. 4. In this case, the climatological prob-
ability (=) is 0.3 and the cost-loss ratio (C/L) is 0.2.
Note that the quality/value relationship is multivalued,
in the sense that a range of values of VF exists for a
particular value of the EBS (and vice versa). It is mul-
tivalued because the EBS, which measures forecast ac-
curacy, does not tell the whole story. Specifically, VF
depends on two aspects of quality in this situation.
These aspects of quality could be measured by two
conditional probabilities or by one conditional prob-
ability and one marginal probability (see section 3).
However, a single measure of forecasting perfor-
mance—for example, the EBS—cannot uniquely
characterize two such basic aspects of quality. In other
words, a multivalued relationship between the EBS and
VF exists because a particular value of the EBS cor-
responds to many different possible combinations of
values of two such probabilities and these various
combinations of probability values lead to different
values of VF.

The existence of a multivalued relationship allows
for the possibility of quality/value reversals. To illus-
trate this possibility, consider two forecasting systems
A and B and suppose that 4’s forecasts possess values
of the EBS and VF equal to 0.175 and 0.030, respec-
tively. Further, suppose that the EBS for B’s forecasts
is 0.150. In terms of the EBS, B’s forecasts are more
accurate than A’s forecasts. However, VF for B’s fore-
casts ranges from 0.000 to approximately 0.080 (see
Fig. 4). Thus, depending on the characteristics of B’s
forecasts (as described by the conditional and /or mar-
ginal probabilities ), these forecasts could be either more
valuable or less valuable than A4’s forecasts. Moreover,
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FIG. 4. Relationship between forecast accuracy and forecast value
in the cost-loss ratio situation, with climatological probability =
= 0.3 and cost-loss ratio C/L = 0.2 (taken from Murphy and Eh-
rendorfer 1987).



JUNE 1993

situations involving other combinations of values of =
and C/L would yield similar results. In summary, it
is necessary to measure forecast quality in its full di-
mensionality—two dimensions in this context—to en-
sure the existence of a monotonic quality/value rela-
tionship.

As noted in section 3, the general conditions that
relative quality must satisfy to guarantee that a mono-
tonic relationship exists between forecast quality and
forecast value are embodied in the sufficiency relation
(see Ehrendorfer and Murphy 1988; Krzysztofowicz
and Long 1991). It should now be evident that the use
of forecast quality as a surrogate for forecast value, a
common practice in the meteorological community,
is not justified unless these (or other equivalent) con-
ditions are respected. Clearly, a need exists to explore
quality/value relationships for weather forecasts in
greater detail, both in general and in the context of
specific decision-making problems.

6. Discussion and conclusion

The arguments set forth in the preceding sections of
this paper clearly indicate that a forecaster’s—and a
user’s—interests are best served by striving to attain
high levels of all three types of goodness. To realize
such goals, renewed attention must be given to several
activities related to the forecasting process, including
the formulation, evaluation, and communication of
weather forecasts. In this section we briefly discuss some
implications of these arguments, describe several se-
rious deficiencies in current operational practices, and
identify some potentially beneficial changes in these
practices.

It seems quite evident that the concept of consistency
possesses important implications for the ways in which
weather forecasts are formulated and communicated
to users. First and foremost, a basic maxim of fore-
casting is violated whenever forecasts do not correspond
to judgments (see section 2). Second, the examples
introduced in sections 5a and 5b demonstrate that the
failure to maintain high levels of consistency leads di-
rectly to reductions in the levels of both (expected)
forecast quality and forecast value. Moreover, it was
shown that the widespread practice of ignoring uncer-
tainty when formulating and communicating forecasts
represents an extreme form of inconsistency and gen-
erally results in the largest possible reductions in quality
and value.

Obviously, renewed efforts must be made to ensure
that the uncertainty inherent in judgments is properly
reflected in forecasts. Forecasts and judgments may be
inconsistent in other respects as well—for example, in
terms of their spatial and/or temporal specificity. In
view of their possible adverse impacts on quality and
value, the presence and implications of such inconsis-
tencies warrant further investigation. In this regard, it
is important to recognize that type 1 goodness is a rel-
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atively new and undeveloped concept. It will take some
time before the full implications of this concept are
understood and appreciated. Moreover, the concept
itself may require further refinement, and methods
must be developed to discourage inconsistency in all
of its real-world manifestations.

Nevertheless, the nature of type 1 goodness and its
impacts on type 2 and type 3 goodness raise several
questions of considerable importance in an operational
forecasting context. For example: What information
generally contained in forecasters’ judgments is not in-
cluded—or is inadequately reflected—in their fore-
casts? What reasons are given for treating the infor-
mation in this way? (To make these questions more
meaningful, it is relatively easy to imagine the existence
of trade-offs between consistency—or completeness—
and conciseness in the process of translating judgments
into forecasts.) In view of the benefits of including such
information (in terms of enhanced levels of type 2 and
type 3 goodness), is its current treatment justified? If
not, what practical steps can be taken to facilitate the
incorporation of this information into operational
weather forecasts? Although these questions deserve
careful consideration, they are clearly beyond the scope
of the present paper.

In the case of forecast verification (the scientific as-
pects of forecast evaluation ), the discussion of forecast
quality in section 3 reveals that quality is inherently
multifaceted in nature. As traditionally practiced,
however, forecast verification has tended to focus on
one or two aspects of overall forecasting performance
such as accuracy and skill. In particular, fundamental
aspects of quality that relate to the conditional distri-
butions of the observations given forecasts and the
conditional distributions of the forecasts given obser-
vations generally have been overlooked.

These practices are deficient in two important re-
spects. First, they fail to consider all of the potentially
relevant aspects of forecast quality. For example, in-
formation describing conditional aspects of quality
such as reliability, resolution, and discrimination may
be quite useful to forecasters who want to identify basic
strengths and weaknesses in their forecasts. Identifi-
cation of such basic characteristics of forecasting per-
formance is an essential first step in the process of
model refinement and forecast improvement.

Second, as noted in section 5c, various aspects of
forecast quality are frequently used as surrogates for
forecast value. For example, it is often assumed that
increases in forecast accuracy necessarily imply in-
creases in forecast value. However, a monotonic rela-
tionship between quality and value exists only when
the multifaceted nature of quality is respected in the
measurement process. To ensure that all of the poten-
tially relevant aspects of forecast quality are considered,
it is necessary to take a distributions-oriented approach
to forecast verification. (In effect, whatever body of
methods is used to assess forecast quality, they must
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be equivalent to the methodology underlying the suf-
ficiency relation.) In some cases, it may be possible to
reduce the complexity and dimensionality of the most
general distributions-oriented approach (see Murphy
1991). However, arbitrary reductions in complexity
and dimensionality, such as those explicitly or implic-
itly made in conjunction with current verification
practices, frequently lead to incomplete and/or mis-
leading results. To make rational choices regarding re-
ductions in the complexity or dimensionality of veri-
fication problems, detailed information is needed about
the users of the forecasts and about their decision-
making problems.

In this regard, it is important to recognize that fore-
casters—and others in the operational meteorological
community—routinely choose among alternative
forecasting methods or models, alternative modes of
presentation of forecast information, alternative chan-
nels of communication of forecasts, etc. (as well as
among alternative methods of measuring forecasting
performance). Despite the fact that these choices di-
rectly affect the content and quality of forecasts, the
information requirements and decision-making prob-
lems of potential users are seldom considered explicitly
in making such choices. In particular, little if any effort
is generally expended to acquire specific user-related
information regarding the nature of these requirements
and problems, information that is essential if forecasters
are to make rational decisions regarding forecast for-
mulation and communication. Clearly, no weather
forecasting system can achieve the highest possible lev-
els of type 3 goodness unless forecasters acquire such
user-specific information and then make judicious use
of the information to guide their choices among alter-
native methods of formulating, evaluating, and com-
municating the relevant forecasts.

This paper was motivated in part by the differences
of opinion that exist among forecasters—and between
forecasters and users—regarding the meaning of the
phrase “good (bad ) weather forecasts™ (see section 1).
Now that the three basic types of goodness have been
identified and described, it seems appropriate to ask
the following question: To what extent are such dif-
ferences of opinion warranted? In the case of the fore-
casters, these differences of opinion appear to be largely
unwarranted. For the most part, they exist because
forecasters (and others in the meteorological com-
munity ) do not fully appreciate the multifaceted nature
of forecast quality. Attention is generally focused on
one or two aspects of quality such as accuracy and
skill. (The arguments that do occur usually relate to
which measures of these aspects are appropriate rather
than which aspects of quality should be measured.)
However, as the discussion in section 3 indicates, mea-
sures of accuracy or skill do not and cannot tell the
whole story regarding forecasting performance. This
story can be told only by the joint distribution of fore-
casts and observations, or equivalently by conditional
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and marginal distributions derived from this joint dis-
tribution. Hopefully, differences of opinion among
forecasters regarding forecasting performance will de-
crease over time as the holistic distributions-oriented
approach gains new adherents among members of the
operational meteorological community.

With regard to differences of opinion between fore-
casters and users (and among users), it should be ev-
ident from the discussion of forecast value in section
4 that such differences of opinion are quite likely to be
warranted in most instances. For example, forecasts of
relatively high quality (according to a distributions-
oriented evaluation of forecasting performance) may
be of little or no value to some users, because of the
nature of their decision-making problems or because
of the relatively high quality of their prior information.
Moreover, users facing different decision-making
problems may find the same set of forecasts of quite
different value. In effect, forecasters and users generally
use fundamentally different methods of evaluating
forecasts. Nevertheless, the differences between their
respective assessments of goodness in weather fore-
casting would be less pronounced if forecasters adopted
a distributions-oriented approach to forecast evalua-
tion. Moreover, it would be beneficial for members of
both communities to gain a greater understanding and
familiarity with the ways in which their “opposite”
numbers evaluate forecasting performance.

Finally, since consistency may be a relatively new
concept to many forecasters, the links between consis-
tency, quality, and value deserve special emphasis here.
The arguments and examples set forth in this paper
have demonstrated that type 1 goodness directly irn-
pacts both type 2 and type 3 goodness. Thus, at any
point in time, the highest possible levels of forecast
quality and forecast value cannot be achieved without
attaining the highest possible level of consistency. In
the context of subjective weather forecasting, it would
seem that the correspondence between forecasts and
judgments is an important concept that warrants con-
siderably more attention than it has received heretofore.
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