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The purpose of these notes is to: (1) explain how to recognize a linear program, (2)
show how to take the dual of a linear program, and (3) list the fundamental results relating
a linear program and its dual. These notes do not provide any proofs and do not explain
any of the deep geometric insight behind linear programming duality. The main goal is to
explain in detail the mechanical procedure of taking the dual.

There are other ways to take the dual than the one described herein, but this is my
favorite. I find that it is readily memorized once it has been practiced on a few linear
programs. It is perhaps slower and more tedious than other methods you might find in
textbooks, but it is easy to memorize, and the intermediate steps produce useful information
as a by-product.

1. Formulation

A linear program is a formulation of an optimization problem: a minimization or maximiza-
tion of an objective function over some domain. The objective function is linear, and the
domain, or feasible set, is defined by linear constraints. Rather than give the generic form
of a linear program, here is a specific linear program that we will work with throughout this
primer. Once we’ve studied this example, it should be quite clear what a linear program
looks like in general.

max
x1≥0, x2≤0, x3

v1x1 + v2x2 + v3x3 (1)

such that a1x1 + x2 + x3 ≤ b1 (2)
x1 + a2x2 = b2 (3)
a3x3 ≥ b3 (4)

The variables here are x1, x2, x3. The remaining terms are constants (e.g., v1, a2, b3). A
linear program consists of an objective function (1), and a set of inequality and equality
constraints (2–4). The objective function

f(x) = v1x1 + v2x2 + v3x3

is a linear function. Formally, this means that for two vectors x1 and x2 and real-valued
constants c1 and c2 we have f(c1x1 + c2x

2) = c1f(x1) + c2f(x2). You can check that this
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indeed holds for our objective. The objective can either be a maximization or minimization.
In our case, we have a maximization problem.

The left-hand side of each constraint is also a linear function. The right-hand sides are
all constants. (You may encounter some linear programs where the right-hand side for some
constraint includes some variables, but the constraint can always be rearranged so that the
right-hand side is constant.) In a linear program, we cannot have strict inequalities; so
x1 + x2 < 3 would not be allowed, for example.

Constraints that specify whether each variable is non-negative, non-positive, or unre-
stricted are special and we usually list those under the max or min. This only holds for
these kinds of constraints. A constraint of the form x1 ≥ 2, for example, is not special,
whereas x1 ≥ 0 is. In our linear program, x1 must be non-negative, x2 must be non-positive,
and x3 is unrestricted (it helps to be explicit about this).

2. Primal and Dual

The linear program we start with is typically called the “primal”. To each linear program
there is associated another linear program called its “dual”. Deriving the dual from the
primal is a purely mechanical procedure. Let’s see how to derive the dual of the linear
program of the previous section. There are seven steps. The first two steps put the primal
in a “standard form”.

Step 1. If necessary, rewrite the objective as a minimization.

In our case the objective (1) is a maximization, so we rewrite it as

min
x1≥0, x2≤0, x3

−v1x1 − v2x2 − v3x3

A solution that maximizes an objective also minimizes the negative of that objective, so
this does not change the set of optimal solutions to the program.

Step 2. Rewrite each inequality constraint as a “less than or equal”, and rearrange each
constraint so that the right-hand side is 0.

After this step our linear program now looks as follows.

min
x1≥0, x2≤0, x3

−v1x1 − v2x2 − v3x3

s.t. a1x1 + x2 + x3 − b1 ≤ 0 (5)
x1 + a2x2 − b2 = 0 (6)
−a3x3 + b3 ≤ 0 (7)

Note that the special constraints listed below the min do not change.

Step 3. Define a non-negative dual variable for each inequality constraint, and an unre-
stricted dual variable for each equality constraint.

To constraints (5) and (7) we associate variables λ1 ≥ 0 and λ3 ≥ 0 respectively. To
constraint (6) we associate λ2, which is unrestricted.

Step 4. For each constraint, eliminate the constraint and add the term (dual variable)*(left-
hand side of constraint) to the objective. Maximize the result over the dual variables.
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Concretely, for the first constraint (5) we would remove it and add the following term to
the objective.

λ1 (a1x1 + x2 + x3 − b1)

If we do this for each constraint (except of course special constraints), and maximize the
result over the dual variables, we get

max
λ1≥0,λ2,λ3≥0

min
x1≥0, x2≤0, x3

−v1x1 − v2x2 − v3x3

+ λ1 (a1x1 + x2 + x3 − b1) (8)
+ λ2 (x1 + a2x2 − b2) (9)
+ λ3 (−a3x3 + b3) (10)

It helps to think of this as a two-player game, with an “outer player” and an “inner player”.
The outer player goes first and chooses some values for λ1, λ2, λ3 (respecting the special
constraints). With these values fixed, the inner player then chooses some values for x1, x3, x3

so as to minimze the objective. Conscious that the inner player will do this, the outer player
will choose values for λ1, λ2, λ3 so that the minimum value in the inner player’s minimization
problem is as large as possible.

Step 5. We now have an objective with several terms of the form (dual variable)*(expression
with primal variables), plus remaining terms involving only primal variables. Rewrite the
objective so that it consists of several terms of the form (primal variable)*(expression with
dual variables), plus remainig terms involving only dual variables.

If we do this to the objective of the previous step, we obtain

max
λ1≥0,λ2,λ3≥0

min
x1≥0, x2≤0, x3

−b1λ1 − b2λ2 − b3λ3

+ x1(a1λ1 + λ2 − v1) (11)
+ x2(λ1 + a2λ2 − v2) (12)
+ x3(λ1 − a3λ3 − v3) (13)

This step takes great care. If you get any sign wrong or forget any term, the resulting dual
will of course be wrong, but also very misleading and confusing.

Step 6. Remove each term of the form (primal variable)*(expression with dual variables)
and replace with a cnostraint of the form:

• expression ≥ 0, if the primal variable is non-negative.

• expression ≤ 0, if the primal variable is non-positive.

• expression = 0, if the primal variable is unrestricted.

This step is not hard to memorize because it is in fact intuitive. Let’s consider term (11):

x1(a1λ1 + λ2 − v1).

Because x1 ≥ 0, we introduce constraint a1λ1 +λ2−v1 ≥ 0. Why must this hold? If we had
a1λ1 + λ2− v1 < 0, then note that the inner player could choose x1 → +∞ (i.e., arbitrarily
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large), and thus the objective value is −∞. Since the outer player wants to maximize the
value of the inner player’s minimization problem, it should therefore choose the values of
λ1, λ2, λ3 so that a1λ1 + λ2 − v1 ≥ 0.

The same reasoning applies to the other two terms. The outer player must choose its
values so that λ1 + a2λ2 − v2 ≤ 0 otherwise the inner player can make the term

x2(λ1 + a2λ2 − v2)

tend to −∞ by choosing x2 → −∞. Finally, since x3 is unrestricted, the only way to make
sure the term

x3(λ1 − a3λ3 − v3)

cannot approach −∞ is to choose the dual values such that λ1− a3λ3− v3 = 0. After these
changes we have a new linear program. Note that the primal variables no longer appear.

max
λ1≥0,λ2,λ3≥0

−b1λ1 − b2λ2 − b3λ3

a1λ1 + λ2 − v1 ≥ 0 (14)
λ1 + a2λ2 − v2 ≤ 0 (15)
λ1 − a3λ3 − v3 = 0 (16)

Step 7. If the linear program in step 1 was rewritten as a minimization, rewrite the result
of the previous step as a minimization; otherwise, do nothing.

The result looks as follows. Optionally, the constraints can be also be rearranged in
whichever form is most natural.

min
λ1≥0,λ2,λ3≥0

b1λ1 + b2λ2 + b3λ3

a1λ1 + λ2 ≥ v1 (17)
λ1 + a2λ2 ≤ v2 (18)
λ1 − a3λ3 = v3 (19)

This completes the process of taking the dual. As an exercise, you can check for yourself
that by taking the dual of this new linear program, you recover the primal.

3. Key Results

A linear program may be infeasible, unbounded, or have a finite optimum. A progam is
infeasible if there no solution that satisfies all the given constraints. For instance, suppose
that in our original primal program we have a1 = a2 = a3 = 1, and b1 = −1 whereas
b2 + b3 ≥ 1. Then clearly there is no solution to constraints (2–4). (Feasibility only has to
do with the constraints, no the objective.)

A linear program can alternatively be unbounded. This means that for any feasible
solution, there is another feasible solution with strictly higher objective value, in the case
of a maximization program, or strictly lower objective value, in the case of a minimization
program. For instance, suppose that in our original primal we have a1 = a2 = 1 and
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Finite optimum Unbounded Infeasible
Finite optimum Possible Impossible Impossible

Unbounded Impossible Impossible Possible
Infeasible Impossible Possible Possible

Table 1: Possible combinations for the primal and its dual.

a3 = −1, whereas b1 = b2 = b3 = 0, and finally the coefficients in the objective are all
positive :v1, v2, v3 > 0. Then note that c(0, 0, 1) is a feasible solution for any c ∈ R. The
objective value of this solution is cv3, which we can make abitrarily large by letting c→ +∞.
Techincally, this means there is no optimal solution, even though there are feasible solutions.

If a program is feasible and bounded, it has a finite optimum (though it may not be
unique). Table 1 lists the possible relationships between feasibility of a primal program and
its dual. In particular, note that if the primal program is unbounded, the dual is infeasible,
and if the dual is unbounded, the primal program is infeasible. But it may be the case that
both are infeasible.

The value of the objective function of the primal program at an optimum is denoted VP
and the optimum value of the dual is denoted VD. The major result of linear programming
is the following.

Theorem 1 (Strong duality) If a linear programming problem has an optimal solution,
so does its dual, and VP = VD.

This result relates the values of the primal and dual programs, but not their solutions. The
following result is written in reference to out running example. It should be straightforward
to adapt it to other linear programs.

Theorem 2 (Complementary slackness) Let (x1, x2, x3) and (λ1, λ2, λ3) be feasible so-
lutions to the primal and dual problem, respectively. They are optimal solutions for the two
respective problems if and only if

λ1 (a1x1 + x2 + x3 − b1) = 0
λ2 (x1 + a2x2 − b2) = 0
λ3 (−a3x3 + b3) = 0

and

x1(a1λ1 + λ2 − v1) = 0
x2(λ1 + a2λ2 − v2) = 0
x3(λ1 − a3λ3 − v3) = 0

These constraints are known as the complementary slackness conditions. Note that the first
three constraints can be read off from (8–10), and the final three from (11–13). So we get
the complementary slackness conditions as a by-product of our procedure for taking the
dual.

5



The complementary slackness conditions are sometimes written in alternativee forms.
For instance, we can write the condition

λ1 (a1x1 + x2 + x3 − b1) = 0

instead as
λ1 > 0⇒ a1x1 + x2 + x3 − b1 = 0.

or equivalently (taking the contrapositive)

a1x1 + x2 + x3 − b1 < 0⇒ λ1 = 0.

Given an optimal primal solution, the complmentary slackness conditions define a system
of equalities that can be solved to identify an optimal dual solution (the latter solution also
has to satisfy the dual feasibility constraints), and vice-versa.
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