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10.1 Introduction

Forecasts are to be used as input to decision-making. Today, when it comes to renew-
able energy generation, such decisions are increasingly made in a liberalized electricity
market environment, where future power generation has to be offered through con-
tracts and auction mechanisms, hence based on forecasts. Taking the example of the
European Nordic region, in 2014 around 84% of all electricity exchanges were
made through Nord Pool. These markets were mainly designed considering the needs
of conventional plants which, due to a limited flexibility, have to settle in advance on
their production schedule.

Since renewable energy sources are to eventually participate in market mechanisms
under the same rules than that for conventional generators, mismatches between con-
tracted generation and actual deliveries may induce financial penalties. Indeed, the en-
ergy production from wind and solar power plants can be predicted with a limited
accuracy that degrades with further lead times. This, in addition to uncertainties in
market prices, yield uncertain market returns. However, even under such high levels
of uncertainty, renewable energy producers may make optimal use of all information
available, either in a deterministic or probabilistic form. It is our aim here to describe
these processes of decision-making in electricity markets based on forecast informa-
tion, also allowing to assess the value of various types of forecasts perceived by market
participants.

Such problem of participation of renewable energy producers in electricity markets
has received increasing attention over the last decade, mainly considering the case of
wind power generation. One of the very first work in that field was that of Bathurst
et al. (2002), which showed that, even using naive models for wind power forecasts,
the expected profit can be increased by means of risk analysis. Consequently, many
alternative and complementary proposals were made for obtaining optimal participa-
tion strategies and to assess the value of probabilistic forecast information in electricity
markets. For instance, the aim of Bremnes (2004) was to show that one could find an
optimal quantile forecasts that would be the best forecasts to use for market participa-
tion. This naturally justified the idea of further developing probabilistic forecasting
methods, so as to be able to obtain such optimal quantiles. Focusing on expected rev-
enue maximization and risk management, Pinson et al. (2007) gave analytical expres-
sions for the optimal amount of contracted energy based on probabilistic forecasts, by
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giving focus on the utility function of market participants. As a bridge between fore-
cast quality and value in electricity markets, Bitar et al. (2012) presented an extensive
analysis on this topic, highlighting the link between the expected profit and quality
measure for the input wind power forecasts.

Our aim here is to describe the framework of market participation for renewable
energy producers and to show how forecasts information directly translates to market
value for these participants. As a basis for the development and discussion, we will
consider the case of wind power producers, though similar developments could be
made for solar power. This chapter is structured as follows. Section 10.2 introduced
the reader to the basic concepts of competitive electricity markets, focusing on their
structure and underlying timeline. These concepts are translated into equations in
Section 10.3, by formulating the market revenue of wind power producers. Section
10.4 presents different offering strategies that a market participant may apply, depend-
ing on the available information of future wind power production. Then, in Section
10.5, the different trading strategies are tested and compared in a case study. Finally,
conclusions are drawn in Section 10.6.

10.2 Electricity market context

Over the last decades, power systems moved from a centralized organization to new
frameworks that aim to enhance competition. Initially, state-owned and vertically
integrated companies were in charge of the management of the whole power system,
from generation to retail. Then, aiming in privatizing the electricity supply sector and
attracting new investors, deregulation processes have occurred worldwide. The key
feature of the processes was the separation between activities of generation, transmis-
sion, distribution and retail, while banning the vertical integration among different
sectors. Competition has been promoted mainly in generation and retail, while the
transmission sector is still a natural monopoly, because of the prohibitive investment
cost of transmission lines. The essential role of operation and management of the trans-
mission grid is carry out by noncommercial entities, called transmission system oper-
ator (TSO) in Europe and independent system operator (ISO) in the United States.

The aim of this section is to introduce the reader to the concepts of electricity mar-
kets and their timeline. It is structured as follows. Section 10.2.1 presents the general
structure of electricity markets, distinguishing between futures markets and electricity
pools. Sections 10.2.2, 10.2.3 and 10.2.4 present the main trading stages of an elec-
tricity pool, i.e., day-ahead, intraday, and balancing markets, respectively.

10.2.1 Overview of various markets and their timeline

In electricity markets, two different trading floors are typically available, depending on
the proximity of the trading. Medium/long-term markets (i.e., futures markets) allow
trading on long-term horizons. The market participants can trade both physical and
financial products, those by mean of forward contracts and options. A forward contract
is signed between a seller who undertakes to produce a certain amount of energy
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and a buyer who consumes that energy. Forward contracts are usually standard prod-
ucts, e.g., base load contracts include all the hours of the contracted time span, whereas
peak load contracts only hours with high demand, typically from 8 a.m. to 7 p.m. of
working days. Forward contracts can be associated with options. An option allows
the buyer to decide after the agreement weather to benefit or not of the forward contract.

Differently, short-term markets (i.e., electricity pools) allow the trading of electricity
on a daily and hourly horizon. Generally, they include several trading floors, i.e., day-
ahead, intraday adjustment, and balancing market. Power producers can participate
both in futures market and electricity pools. Usually a part of the capacity of thermal
plants is contracted in medium/long contracts, since these ensure fixed revenues for the
producers, avoiding the uncertainties of short-term trading. Remaining capacity is usually
contracted in electricity pools. Contrariwise, renewable energy plants, e.g., wind farms
and solar plants, have a stochastic nature and can be predicted with a limited accuracy.
Therefore, they are not suitable for long-term contracts, as it is hard to guarantee a certain
level of production, long time before the real-time operation. In this section wewill focus
on the participation of stochastic producers in electricity pools, neglecting futuresmarket.

10.2.2 Day-ahead market mechanism

The day-ahead market hosts transactions for selling and buying electric energy 1 day
prior to delivery day. Buyers and sellers submit their offers to a market operator, which
acts as central counterpart. A market offer includes a quantity of energy and the price at
which the market participant is willing to contract this amount of energy. In case of
sell/buy offers/bids, the price denotes the minimum/maximum price at which the
seller/buyer is willing to provide/consume electricity. All sell offers are ranked in
price-increasing order, to build a cumulative selling curve. The cumulative buying
curve is carried out similarly, by ordering buy bids in price-decreasing order. The inter-
section between the two curves identifies the market-clearing price and volume. All the
offers on the left of the clearing volume are accepted, while all the offers on the right
are rejected. Accepted offers/bids are, generally, remunerated at the clearing price,
disregarding the offer/bid price.

The day-ahead market gate closure occurs the day before the delivery day, usually
at 12 a.m. The day-ahead market includes 24 separate auctions, one per each hour of
the day. After the gate closure the market operator clears the market and informs each
seller/buyer of their production/consumption schedule.

10.2.3 Intraday adjustment and continuous trading

The intraday market is the market for sale/purchase energy during the day of delivery.
It opens after the day-ahead market gate closure and closes from hours to minutes prior
to energy delivery. Intraday market can be a useful tool for market participants to
adjust their positions. Conventional producers may access the market to fix an infea-
sible schedule, since intertemporal constraints (e.g., ramping constraints) cannot, usu-
ally, be directly included in the market offers. On the other hand, stochastic producers
can use this additional trading floor to modify their market position as their forecasts

Wind power in electricity markets and the value of forecasting 261



may be more accurate, closer to real-time operation. Trading in the intraday market is,
generally, continuous. The negotiation mechanism is based on automatic matching of
demand bids and supply offers, which allows a continuous submission of new offers/
bids during the whole session. Similarly to the day-ahead market, the intraday market
is managed by the market operator.

10.2.4 Balancing market mechanism

The balancing market is the last stage for trading electric energy. It plays an essential
role, as production and consumption levels must match during the operation of electric
power systems. This is a key feature, given that, at the moment, storage of large quan-
tities of electric energy is not economically convenient.

Balancing markets are generally single-period markets, i.e., a separate session for
each trading period. They allow the possibility to trade, in addition to electric energy
ancillary services (e.g., voltage control) needed to maintain the stability of the electric
system.

Conventional producers, usually, participate at the balancing market for providing
regulating power, both in upward (i.e., increasing production) and downward (i.e.,
decreasing production) directions. Differently, stochastic producers, access the
balancing stage to settle deviations from contracted production. These deviations are
priced differently, depending on the pricing imbalance system of the market. We can
distinguish between single-price imbalance system and two-price imbalance system.

In a single-price imbalance system the deviations are settled at the market price, dis-
regarding the sign of producer imbalances (i.e., excess or lack of production). As a
general rule, the balancing price is higher/lower than the day-ahead market price if
the system is in up/downregulation, i.e., when a lack/excess of power production
occurs. This price settlement leads to arbitrage opportunities for power producers.
For instance, when the producer and the system imbalance are of opposite sign (i.e.,
when the power producer deviation helps to reduce the whole system imbalance),
the producer receives a bonus for its deviation. Conversely, when the two imbalances
occur in the same direction, the producer is penalized. Fig. 10.1a shows the arbitrage
opportunity as function of the producer imbalance and the system status (up- or
downregulation).

UP-regulation UP-regulation

DOWN-regulation DOWN-regulation

Imbalance Imbalance

Arbitrage
opportunity

Arbitrage
opportunity

Figure 10.1 Arbitrage opportunity for different imbalance settlement schemes.
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In a dual-price imbalance system, deviations from the production schedule are traded
at different prices, conditional upon the imbalance sign. When the deviation of the pro-
ducer and system imbalance occur in opposite directions (i.e., the producer helps in
reducing the system imbalance), its deviation is traded at the day-ahead market price,
avoiding possible bonuses. Conversely, when the two imbalances occur in the same di-
rection, the deviation of the producer is priced at the balancing market price (i.e., usu-
ally penalized). Fig. 10.1b shows the absence of arbitrage opportunity in a two-price
imbalance system.

10.3 From market revenue to forecast value

In this section we will translate into equations the qualitative concepts of electricity
pools introduced in Section 10.2. This section is structured as follows. Section 10.3.1
presents the assumptions that define the framework of the trading problem. The formu-
lation of market revenues are developed in Section 10.3.2, while Section 10.3.3 presents
a performance parameter that helps in comparing different trading strategies.

10.3.1 Assumptions

Let us introduce some assumptions that allow us to simplify the structure of the market
and define the framework of the analysis.

A1 The wind power producer trades only in the day-ahead market and in the balancing market,
while the intraday trading is neglected.

A2 The producer is risk neutral, i.e., he aims to maximize his profit, disregarding possible huge
losses.

A3 The producer is price taker, i.e., he cannot influence market equilibrium with his behavior.
A4 The producer offer its energy generation at zero marginal cost.
A5 The producer is provided with the cumulative distribution function FEð$Þ of future wind

power production E. This writes

FE eð Þ ¼ ℙ E � eð Þ ¼
Z e

0
fE xð Þdx; (10.1)

where fEð$Þ is the probability density function

fE xð Þ ¼ ℙ x < E < xþ dxð Þ
dx

: (10.2)

Assumptions A1, A3, and A5 are necessary for obtaining an analytical solution of
the wind power producer profit maximization problem (Morales et al., 2013) and have
been used in several studies (Bremnes, 2004; Pinson et al., 2007; Zugno et al., 2013a).
As alternative, the problem can be formulated as a stochastic optimization problem
(Morales et al., 2010; Rahimiyan et al., 2011), which can be easily extended by
including the intraday trading. On the other hand, assumptions A2 and A4 are not
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strictly required for the analytical formulation of the problem, but they help the reader
in focusing on the fundamental concepts. However, risk aversion can be added subse-
quently, as Zugno et al. (2013a) show in their work, by anchoring the market quantity
to the expected value of wind power production, either in the decision space or the
probability space. When the problem is formulated using stochastic optimization,
risk aversion can be included by adding the Conditional Value At Risk in the objective
function (Morales et al., 2010; Rahimiyan et al., 2011).

10.3.2 Formulation of market revenues

Let l and q denote prices and energy quantities, respectively. Then, let D and B be the
subscripts denoting the day-ahead and the balancing market, respectively. Moreover,
let us denote with t the time of placing offers (i.e., day-ahead market closure) and with
k the time delay between t and the real-time operation. In each trading period k the
wind power producer can submit an offer in the day-ahead market, specifying the
amount of energy qD he or she is willing to contract. The market revenue rk of a market
participant is computed as

rk ¼ rDk þ rBk ¼ lDk q
D
k þ lBk q

B
k . (10.3)

The quantities contracted in the two market stages, i.e., qDk and qBk , are linked by

qBk ¼ Ek � qDk ; (10.4)

where Ek is the wind power production measured during the hourly interval k.
Eq. (10.4) shows that the quantity contracted at the balancing stage, i.e., qBk , is not a
decision variable. Indeed, Ek is not under control of the power producer and qDk is fixed
at balancing stage. By rearranging Eq. (10.3),

rk ¼ lDk q
D
k þ lBk

�
Ek � qDk

� ¼ lDk Ek �
�
lBk � lDk

��
qDk � Ek

� ¼ lDk Ek � Lk .

(10.5)

The first term of Eq. (10.5), i.e., lDk Ek, is the product between the day-ahead market
price and the effective wind power production during interval k. It represents the profit
that the producer may have in case of perfect information, i.e., if he could know at t the
wind production at t þ k. Differently, the term Lk represents the penalties for imbal-
ance creation, and it is always positive (in a dual-price settlement scheme). Therefore,
lDk Ek is the maximum profit that can be reached by the wind power producer. Note that
all these considerations are true only for a dual-price settlement scheme (Lk can be
either positive or negative in a single-pricing scheme).

10.3.3 Linkage to forecast value

Let us introduce a performance parameter that represents a coherent measure to access
the effectiveness of a market offering strategy. As shown in Section 10.3.2, the profit
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of the power producer can be seen as the sum between the profit in case of perfect in-
formation (lDk Ek), which represents the upper limit and the imbalance penalty term
(Lk). The first term is the maximum profit that could be reached by the power producer
in each trading period, and it can be used as reference. The performance ratio gtþk of an
offering strategy during interval k, is defined as

gtþk ¼
rk

lDk Ek
¼ 1� Lk

lDk Ek
. (10.6)

However, the result of specific strategy in a single time interval may not be the sta-
tistically significant. Therefore, the performance ratio g is usually evaluated over N
days, i.e.,

g ¼
XN
t¼1

X36
k¼13

gtþk. (10.7)

The upper limit of g is 1, which is obtained when the power producer is never
penalized for its imbalances, during the N days of reference. Note that g is not bounded
inferiorly. As for Section 10 3.2, all these considerations are true only for a dual-price
settlement scheme.

10.4 Formulation of offering strategies

In this section we will develop different trading strategies of a wind power producer
who aims to maximize his or her market revenue. The section is developed as follows.
Section 10.4.1 presents some basic offering strategies that can be used as a benchmark.
Then, Sections 10.4.2 and 10.4.3 present optimal offering strategies for the single-
price and the dual-price imbalance settlement, respectively.

10.4.1 Benchmark offering strategies

At the time of placing bids, the wind power producer does not know exactly the future
amount of wind power production. However, he can be provided with forecasts, either
deterministic or probabilistic. Depending on the information that the producer may
have available at t, we can identify three different categories of offering strategy. In
category 1 we include the strategies that a power producer may develop when no fore-
casts of Ek are available. Then, in category 2 we consider the offering strategies based
on point forecasts of Ek. Finally, in category 3, we include offering strategies based on
probabilistic forecasts of Ek. An example of probabilistic forecasts and point forecasts
is shown in Fig. 10.2.

Strategy of category 1 should not require forecasts of Ek. However, the power pro-
ducer can use past observations to develop a naive forecast model. We consider two
different strategies in this category. The first, called Strategy 1A, proposes to offer
at day-ahead stage the average value of wind power production over the previous
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years. A capacity factor cf is evaluated, as the ratio between average measured produc-
tion and total installed capacity

�
E
�
. Then, the value of qDk is computed as

qDk ¼ cf E (10.8)

The second, i.e., Strategy 1B, suggests to use wind power production measured at t, as
a representative for future values of Ek. This writes

qDk ¼ Et (10.9)

When more information is available to the power producer, he or she may try to
exploit this additional information to increase his expected market profit. In case of
Strategy 2, this additional information is provided in the form of deterministic (point)
forecasts. Point forecasts represent the expected value of future wind power produc-

tion, i.e., bEk ¼
R E
0 xfEkðxÞdx. In Strategy 2 the market quantity offer is

qDk ¼ bEk (10.10)

Example 4.1. Let us consider an onshore wind farm of 21 MW located in Denmark,
having a capacity factor cf of 24%. Then, let us suppose that at 12 a.m. of June 6, 2014,
the producer has to trade in the day-ahead market the wind power production for the
following day. Following Strategy 1A would result in offering

qDk ¼ 5004 kW; ck˛ 13; 36½ �; (10.11)
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Figure 10.2 Probabilistic and point forecasts for June 7, 2014.
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while under strategy 1B, market offer would be

qDk ¼ 13222 kW; ck˛ 13; 36½ � (10.12)

Differently, Strategy 2 required the point forecasts of Ek, shown in Table 10.1.
The energy quantities contracted by the three offering strategies are graphically

shown in Fig. 10.3. Moreover, Table 10.2 gives the exact value of market offers for
the first 8-hourly interval.

10.4.2 Trading strategies in a single-price imbalance system

In a single-price imbalance system, deviations from day-ahead contracted schedule are
priced at the balancing market price, disregarding the sign of the imbalance. Let us
introduce the expected monetary value (EMV), defined in decision theory as the

Table 10.1 Point forecasts of wind power production for June 7, 2014

k 13 14 15 16 17 18 19 20

bEtþkjt ½kW� 7542 6720 5981 6138 6033 5539 6387 5994

k 21 22 23 24 25 26 27 28

bEtþkjt ½kW� 5895 6354 6484 7153 8219 8883 7806 7094

k 29 30 31 32 33 34 35 36

bEtþkjt ½kW� 6382 5290 3833 2084 788 386 694 1142
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Figure 10.3 Different offering strategies for June 7, 2014.
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expected profit due to a specific decision. The EMV for the wind power producer can
be obtained by computing the expectation of Eq. (10.5), i.e.,

E½rk� ¼ lDk E½Ek� þ
�
lBk � lDk

��
E½Ek� � qDk

�
. (10.13)

The market prices (lDk and lBk ) are initially assumed to be known at time t. Then, this
strong assumption will be relaxed. When trying to maximize Eq. (10.13), three
possible events may occur,

1. If lBk > lDk , the term
�
lBk � lDk

�
of Eq. (10.13) is positive. Therefore, the producer increases

his or her profit in expectation when he or she has an excess of production at the balancing
stage. This leads the producer to sell nothing at the day-ahead stage and to wait for selling his
or her whole production at the balancing one (qD�k ¼ 0);

2. If lBk > lDk , the term
�
lBk � lDk

�
of Eq. (10.13) is negative. In this situation the producer offers

all his capacity (E) in the day-ahead market (qD�k ¼ E). Doing that, he maximizes the volume
of the negative imbalance than he can settle at the balancing stage (qBk ¼ Ek � E);

3. If lBk ¼ lDk , the term
�
lBk � lDk

�
of Eq. (10.13) is null and any decision leads to the same

expected profit.
All the three events lead to trivial solutions. When market prices are given, the optimal mar-
ket offer qD�k is only determined by arbitrage possibility, since E½Ek � does not influence its
optimal level.

Let us now relax the assumption of known and deterministic prices. Indeed, we
consider both the day-ahead and the balancing market prices as random variables
with known probability density function. The EMV is obtained by introducing price
expectation in Eq. (10.13), i.e.,

E½rk� ¼ E
�
lDk
�
E½Ek� þ E

�
lBk � lDk

��
E½Ek� � qDk

�
. (10.14)

As for deterministic prices, let us distinguish between three possible situations:

1. If E
�
lBk � lDk

�
>0, optimal bid is qD�k ¼ 0;

2. If E
�
lBk � lDk

�
<0, optimal bid is qD�k ¼ E; and

3. If E
�
lBk � lDk

�
<0, each bid yields to the same EMV.

Table 10.2 Day-ahead market offers under different strategies,
expressed in kW

k 13 14 15 16 17 18 19 20

Strategy 1A 5000 5000 5000 5000 5000 5000 5000 5000

Strategy 1B 13,222 13,222 13,222 13,222 13,222 13,222 13,222 13,222

Strategy 2 7542 6720 5981 6138 6033 5539 6387 5994
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Even when the market prices are considered as random variables, the optimal level of qD�k is
not influenced by the forecast of wind power production. Indeed, this settlement scheme
pushes the producer to offer, at day-ahead stage, nothing or the whole capacity, depending
on the expected value of market prices.

10.4.3 Trading strategies in a two-price imbalance system

In a two-price imbalance settlement scheme, deviations from the contracted generation
schedule are priced differently depending on the mutual sign of the producer’s imbal-
ance and the systems’s imbalance. Therefore, we introduce two artificial market prices
that allow to represent the imbalance sign of the system. The first, called upregulation
price (lUPk ), is equal to the balancing market price when upregulation energy is
required and to the day-ahead market one otherwise. This writes

lUPk ¼
(
lBk if lBk � lDk

lDk if lBk < lDk

(10.15)

Conversely, downregulation price (lDWk ) is equal to the balancing market price when
the system needs downregulation energy and to the day-ahead market one otherwise,
i.e.,

lDWk ¼
(
lDk if lBk � lDk

lBk if lBk < lDk

(10.16)

Then, let us define the differential prices jUP
k and jDW

k as the difference between the
up- and downregulation market prices and the day-ahead market price, respectively.
This writes

jUP
k ¼ lUP � lDk � 0 (10.17)

jDW
k ¼ lDW � lDk � 0 (10.18)

These differential prices allow to simplify the notation of the imbalance cost lDk of
the stochastic producer. Negative imbalances are priced at jUP

k , while positive imbal-

ances at jDW
k . Therefore, lDk is evaluated as

Lk ¼
8<
:

jUP
k

�
qDk � Ek

�
if qDk � Ek

jDW
k

�
qDk � Ek

�
if qDk < Ek

(10.19)
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The value of Lk is always positive, indeed.
1. If qDk > Ek , the terms

�
qDk � Ek

�
and jDW

k are both negative. This yields to a positive value of
Lk;

2. If qDk < Ek , the terms
�
qDk � Ek

�
and jUP

k are both positive. As before, this yields to a positive
value of Lk;

3. If qDk ¼ Ek , trivial.

The EMV can be written as the difference of two terms, i.e., lDE½Ek� and E½Lk�,
which are respectively the expected profit in case of perfect information and the
expected opportunity loss called EOL. The EOL is the loss of profit introduced by
uncertainties, i.e., all the stochastic processes that the power producer can predict
only with a limited accuracy.

As stated before, the term lDEk is not under control of the wind power producer.
Therefore the problem of maximizing the EMV is equivalent to minimizing the
EOL. Let us now write explicitly the expectation of the EOL by moving to the prob-
ability space of wind power production. The Lk is a piece-wise function, where Ek is a
discontinuity point. Therefore, the integral form of the EOL is the sum of two integrals:
the first (upregulation term) is defined for Ek˛

�
0; qDk

�
, while the second (downregula-

tion term) for Ek˛
�
qDk ;E

�
. Let us, initially, assume known and deterministic market

prices. Under such assumption, the EOL is

EOLk ¼
Z qDk

0
jUP
k

�
qDk � x

�
fEkðxÞdxþ

Z E

qDk

jDW
k

�
qDk � x

�
fEkðxÞdx; (10.20)

where fEkð$Þ is the probability density function of the wind power production. The
minimum of the EOL can be computed by deriving Eq. (10.20) with respect to qDk and
by setting it to 0. The solution yields to the following expression for the optimal
quantile qD�k

qD�k ¼ F�1
Ek

 ��jDW
k

����jDW
k

��þ jUP
k

!
; (10.21)

where F�1
Ek

ð$Þ is the inverse of the cumulative density function of wind power
production.

Let us now relax the assumption of deterministic prices. The extended integral form
of the EOL to the probability space of stochastic prices is

EOLk ¼
Z qDk

0

Z N

0
y qDk � x
� �

fEk xð ÞfjUP
k

yð Þdxdy

þ
Z
qDk

E
Z 0

�N
y qDk � x
� �

fEk xð ÞfjDW
k

yð Þdxdy: (10.22)
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Similar to Eq. (10.21), the optimal level of the day-ahead contracted energy is
(Bremnes, 2004; Linnet, 2005)

qD�k ¼ F�1
Ek

0
BBB@

���bjDW
k

������bjDW
k

���þ bjUP
k

1
CCCA ¼ F�1

Ek

�
a�tþk

�
(10.23)

where

bjUP
k ¼

Z N

0
yfjUP

k
ðyÞdy (10.24)

bjDW
k ¼

Z 0

�N
yfjDW

k
ðyÞdy (10.25)

Eq. (10.23) shows that the behavior of a strategic producer in a dual-price settle-

ment is to overestimate future wind power production when
���bjDW

k

��� > bjUP
k , and under-

estimate it if
���bjDW

k

��� > bjUP
k . However, the balancing market prices are hard to forecast

with high accuracy, since they generally show a high degree of stochasticity. Then, we
want to analyze how the quality of wind power forecasts may affect the optimal value
of the EOL. First, we compute the value of the EOL when qDk ¼ qD�k (Bitar et al., 2012)

EOL�
k ¼ �bjUP

k

Z qDk �

0
xfEkðxÞdxþ

���bjDW
k

��� Z E

qDk �
xfEkðxÞdx (10.26)

Then, we apply the change of variable y ¼ FEkðxÞ, thus leading to

EOL�
k ¼ �bjUP

k

Z a�
tþk

0
F�1
Ek

ðyÞdyþ
���bjDW

k

��� Z 1

a�
tþk

F�1
Ek

ðyÞdy (10.27)

Fig. 10.4 provides a graphical interpretation of the two integrals of Eqs. (10.27),
when for sake of clarity, the wind farm capacity E, has been set to 1 MW. I1 and I2
of Fig. 10.4 are computed as

I1 ¼
Z a�

tþk

0
F�1
Ek

ðyÞdy ¼
Z qDk �

0
xfEkðxÞdx (10.28a)

I2 ¼
Z 1

a�
tþk

F�1
Ek

ðyÞdy ¼
Z E

qDk �
xfEkðxÞdx (10.28b)
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For a complete and wider analysis of this topic, we refer the interested reader to
Bitar et al. (2012).
Example 4.2. Let us consider that the expectations of the differential prices (in \euro/
MWh) are:

bjUP ¼ 10; bjDW ¼ �10 (10.29)
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Figure 10.4 Integral form interpretation of EOL�
tþk (E ¼ 1MW).
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which lead to a nominal level of the optimal quantile of 0.5 (a*¼ 0.5). Let us now
consider 2 different cumulative distribution functions with the same expected value but
different variance:

Fa
EðxÞ ¼

8>><
>>:

0; if x < 0

1; if x > 1

x; otherwise

(10.30)

Fb
EðxÞ ¼

8>>>>><
>>>>>:

0; if x < 0:25

1; if x > 0:75

x� 0:25
0:5

; otherwise

(10.31)

In both cases the optimal quantile is ED* ¼ 0.5 MW. The integrals I1 and I2 are
straightforward to compute for uniform distributions and led to the following results:

Ia1 ¼ 0:125 MWh Ib1 ¼ 0:1875 MWh (10.32a)

Ia2 ¼ 0:375 MWh Ib2 ¼ 0:3125 MWh (10.32b)

The reader may refer to Fig. 10.5 for a graphical interpretation of the results. We can
now compute the optimal EOL for the two cases:

EOLa� ¼ �jUPIa1 þ jbjDWjIa2 ¼ 2:50V=MWh (10.33a)

EOLb� ¼ �jUPIb1 þ jbjDWjIb2 ¼ 1:25V=MWh (10.33b)

10.5 Test case exemplification

A test case based on real data can help in understanding concretely the differences
between different offering strategies and the value of wind power forecasts, either
deterministic or probabilistic.

10.5.1 Experimental setup

The test case analyses different possible offering strategies of a 21-MW wind farm
located in Western Denmark. For this wind farm, both point forecasts and probabilistic
forecasts, in form of 19 quantiles and measured values of wind power production, are
available for the whole 2014. Market prices of zone DK1 of Nord Pool Spot are used
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for both day-ahead and balancing market prices. All the assumptions of Section 10.3.1
are still valid. Five different offering strategies are considered for the test case:

• Strategy 1: naive forecasts
• Strategy 1A (capacity factor model)
• Strategy 1B (persistence model)

• Strategy 2: point forecasts
• Strategy 3: probabilistic forecasts
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The producer has to develop a strategy for estimating the nominal level atþk of the optimal
quantile:

atþk ¼

���bjDW
k

������bjDW
k

���þ bjUP
k

(10.34)

The expected price for up(down)-regulation can be evaluated as the product between the
expected price, known that the system is in up(down)-regulation and the probability of
system to be in up(down)-regulation. In this test case we consider two simple models for
the estimation of atþk:
• Strategy 3A: The producer uses the historical market prices of the previous year to eval-

uate of the optimal atþk. Bimonthly averages for each of the 24 trading hours are obtained
by analyzing market data of 2013 (fixed average).

• Strategy 3B: Optimal a is estimated from the last nts market prices available at the
moment of placing bids, for each specific trading hour. In this test case we chose a
time span of 30 days (moving average).

Fig. 10.6 shows the different values of a over a year for the sixth trading interval
(from 5 to 6 a.m.) for strategy 3A (solid line) and 3B (dashed line).

For each strategy we evaluated the total revenue over a year, called r. The total
revenue, following the approach of Section 10.3.2, can be split into two terms: the rev-
enue in case of perfect information, called rPI, and the imbalance penalties term, rL.
The difference between rPI, which is common among each trading strategy, and rL
gives the total revenue. The values of rPI and rL for the whole year (t˛ [1,365] and
k˛ [13,36]) can be computed as follow:

rPI ¼
X365
t¼1

X36
k¼13

lDEk; (10.35)
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Figure 10.6 Coefficient a estimated by mean of strategies 3A and 3B, sixth trading hour.
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rL ¼
X365
t¼1

X36
k¼13

Ltþk (10.36)

10.5.2 Trading results and value of various forecasts

The cumulative values of the imbalance penalties term rL for the different strategies
are displayed in Fig. 10.7.

The results of each trading strategy are shown in Fig. 10.8 and Table 10.3.
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Analyzing the results, the improvement that forecasts give in terms of reducing the
imbalance penalties term is clear. We notice that the term rL is more than the double in
case of naive forecast (Strategies 1A and 1B) compare to point forecast (Strategy 2).
The penalty term is further decreased when probabilistic forecasts are available. If we
take producer 2 as reference, rL is reduced of around 4% for strategy 3B and 9% for
strategy 3A. The difference, mainly if we analyze the performance ratio, may not
appear so significant to the reader; nevertheless, for this test case we used very simple
methods for the estimation of optimal a. More advances models can help in increasing
the performance. Furthermore, in Zugno et al. (2013a) the authors show how the effec-
tiveness of this strategy can be improved by modeling the risk aversion of the wind
power producer.

10.6 Overall conclusions and perspectives

In this chapter we presented the trading problem of a wind power producer. Here we
consider that the stochastic producer has to access the electricity market under the
same rules of conventional generators, thus becoming responsible of its deviations.
We have shown how the wind power producer can exploit information from wind
and market price forecasts, to maximize his or her expected profit. The stochastic pro-
ducer offers in the day-ahead market (which ensures more high and stable prices),
considering his forecasts on balancing market prices. We have shown how he can
exploit all the information he has available and how it can affect his or her profit. We
developed our analysis under assumptions that may not be always acceptable, e.g.,
assumption A3 (price taker). We refer the interested reader to Zugno et al. (2013b) and
Baringo and Conejo (2013), where a stochastic mathematical program with equilibrium
constraints is used to model the price-maker behavior, both at day-ahead stage and
balancing stage (Zugno et al., 2013b). Furthermore, this chapter considers the typical
structure of European electricity markets. Our assumption of uniform prices is not
more true if considering US electricity markets. The reader is referred to Botterud et al.
(2012) for a formulation of the trading problem ofwind production in locational marginal
price markets.

Table 10.3 Revenues and performance ratio of each trading strategy

Strategy

rPI rL r g

[106 V] [106 V] [106 V] [%]

1A 1.256 0.121 1.135 90.40

1B 1.256 0.129 1.127 89.74

2 1.256 0.060 1.196 95.20

3A 1.256 0.055 1.201 95.64

3B 1.256 0.058 1.198 95.38

Wind power in electricity markets and the value of forecasting 277



References

Baringo, L., Conejo, A.J., 2013. Strategic offering for a wind power producer. IEEE Trans-
actions on Power Systems 28 (4), 4645e4654.

Bathurst, G.N., Weatherill, J., Strbac, G., 2002. Trading wind generation in short term energy
markets. IEEE Transactions on Power Systems 17 (3), 782e789.

Bitar, E.Y., Rajagopal, R., Khargonekar, P.P., Poolla, K., Varaiya, P., 2012. Bringing wind
energy to market. IEEE Transactions on Power Systems 27 (3), 1225e1235.

Botterud, A., Zhou, Z., Wang, J., Bessa, R.J., Keko, H., Sumaili, J., Miranda, V., 2012. Wind
power trading under uncertainty in lmp markets. IEEE Transactions on Power Systems
27 (2), 894e903.

Bremnes, J.B., 2004. Probabilistic wind power forecasts using local quantile regression. Wind
Energy 7 (1), 47e54.

Linnet, U., 2005. Tools Supporting Wind Energy Trade in Deregulated Markets (Ph.D. thesis).
Technical University of Denmark, DTU, DK-2800 Kgs. Lyngby, Denmark.

Morales, J.M., Conejo, A.J., Madsen, H., Pinson, P., Zugno, M., 2013. Integrating Renewables
in Electricity Markets: Operational Problems, vol. 205. Springer Science & Business
Media.

Morales, J.M., Conejo, A.J., Pérez-Ruiz, J., 2010. Short-term trading for a wind power producer.
IEEE Transactions on Power Systems 25 (1), 554e564.

Pinson, P., Chevallier, C., Kariniotakis, G.N., 2007. Trading wind generation from short-term
probabilistic forecasts of wind power. IEEE Transactions on Power Systems 22 (3),
1148e1156.

Rahimiyan, M., Morales, J.M., Conejo, A.J., 2011. Evaluating alternative offering strategies for
wind producers in a pool. Applied Energy 88 (12), 4918e4926.

Zugno, M., J�onsson, T., Pinson, P., 2013a. Trading wind energy on the basis of probabilistic
forecasts both of wind generation and of market quantities. Wind Energy 16 (6), 909e926.

Zugno, M., Morales, J.M., Pinson, P., Madsen, H., 2013b. Pool strategy of a price-maker wind
power producer. IEEE Transactions on Power Systems 28 (3), 3440e3450.

278 Renewable Energy Forecasting


